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The number of integral classes in these orbits is therefore finite. We have,
however, an even stronger finiteness theorem for stable ternary cubics:

PROPOSITION 7. Let H be a free Z-module of rank 3. There exist only
finitely many classes of symmetric trilinear forms F € S3HY with a fixed
discriminant A + 0.

Proof. In terms of Arnhold’s invariants S and 7, A is given by
A = S3 — T2. By a theorem of C. Siegel [Si], the diophantine equation
S3 — T2 = A has only finitely many integral solution (S, T') for any integer
A # 0. For each of these solutions the corresponding point in S3H ¢/ sz mc)
lies outside of the discriminant curve, so that the m-fiber over it is a closed
SL(H¢c)-orbit. The finiteness of the class number then follows from the
Borel/Harish-Chandra theorem.

A famous special case of Siegel’s theorem is Bachet’s equation
S3 — T2 = 2; it has only the two obvious solutions (3, £ 5).

REMARK 10. To get finiteness results for ternary cubic forms it is not
sufficient to fix the J-invariant (instead of the discriminant): The forms
fm=X3+XZ*+ Z¥+ mY?Z, m € Z\{0}, all have the same J-invariant,
but they are not equivalent, even over Q, since they have bad reduction at
different primes p | m.

4. INVARIANTS OF COMPLEX 3-FOLDS

In this section we begin to investigate the topology of 1-connected,
compact, complex 3-folds. After a brief discussion of the possible systems of
Chern numbers of almost complex 6-manifolds, we study the behaviour of
the topological invariants of complex 3-folds under certain standard
constructions, like e.g. branched coverings, or blow-ups of points and curves.
Then we describe some interesting examples of 1-connected, non-Kéahlerian
3-folds, including a new construction method which generalizes the Calabi-
Eckmann manifolds. These examples will be needed in the next section in order
to realize complex types of cubic forms as cup-forms of complex 3-folds.

4.1 CHERN NUMBERS OF ALMOST COMPLEX STRUCTURES

Let X be a closed, oriented, 6-dimensional differentiable manifold. The
tangent bundle of X is induced by a classifying map ?x: X — BSO(6) which
is unique up to homotopy. By an almost complex structure on X we mean
the homotopy class [fx] of a lifting y: X = BU(3) of tx to BU(3).



316 CH. OKONEK AND A. VAN DE VEN

PROPOSITION 8. Every closed, oriented, 6-dimensional C>-manifold X
without 2-torsion in H?3(X,Z) admits an almost complex structure. There
Is a 1-1 correspondence between almost complex structures on X and integral
lifts WeH*X,Z) of wy(X). The Chern classes c¢; of the almost
complex manifold (X, W) are given by ¢, =W, ¢, = %(W2 — pi1(X)).

Proof (cf. [W]). The obstructions against lifting 7x to BU(3) lie
in the cohomology groups H*'(X,n:(SO6)/y@),i=0,1,...,5.
Since SO(6)/ys = P* has only one nontrivial homotopy group
7,(SO(6)/y@3)) = Z in dimensions i < 5, there is in fact only one obstruction
o(ty) € H3(X,Z), and this obstruction can be identified with the image
of w,(X) under the Bockstein homomorphism p: H>(X,Z,,) > H*(X, Z).
Since H?3(X,Z) has no 2-torsion by assumption, Bw,(X) must be equal to
zero, so that X has at least one almost complex structure [fy] € [X, BUQB)].
Standard homotopy arguments show now that the map, which assigns to an
almost complex structure [7x] its first Chern class #%c¢;, induces a 1-1 corres-
pondence between integral lifts W e H?(X,Z) of w,(X) and homotopy
classes of liftings of [fx] to BU(3).

The second Chern class ¢, of the almost complex manifold (X, W) is
determined by W? — 2¢, = p,(X).

The Chern numbers c? ,C1Cy,c3 of an almost complex manifold X
of real dimension 6 satisfy the following congruences: ¢; = 0(mod 2),
cic; = 0(mod 24), c¢; = 0(mod 2). Conversely, given a triple (a, b,c) of
integers @ = 0(mod 2), b = 0(mod 24), and c = 0(mod2), there always
exists an almost complex manifold X of dimension 6 with Chern numbers
ci=a,cic;=b, c3 = c.

It 1s not totally clear, however, that one can find a connected manifold X
with prescribed Chern numbers [H1].

PROPOSITION 9.  Every triple (a, b, c) € 93 satisfying a = 0(mod 2),
b = 0(mod 24), ¢ = 0(mod 2) is realizable as the Chern numbers of an almost
complex 6-manifold.

Proof. Consider the complete intersection V(f, g) C P> defined by the
polynomials f(z) = z¢ + 2} + 225 — 25 — 2, — 225, and g(z) =z + 2°
+ 275 — 23 — 24 — 222 [Wel. V(f, g) is a singular 3-fold with 90 ordinary
double points, and every small resolution V of these nodes is a (not necessarily
projective) Calabi-Yau 3-fold with Euler number 4. Suppose now that a
prescribed triple (a,b,c) € Z®3 is realized by a possibly disconnected
almost complex manifold X =II,_,X;. If we form the connected sum

!
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X' of the X;, we obtain a connected almost complex manifold X’ with
Chern numbers ¢3 = g, ¢;c, = b, but with ¢; = ¢ — 2(|I] = 1).

If |7| > 1 take the connected sum of X’ with |I| — 1 copies of the
complex manifold V. Since V is Calabi-Yau, the Chern numbers cf and c¢;c;
remain unchanged, whereas the Euler number of X",/ _ V' becomes c¢; = c.

REMARK 11. The above argument has been suggested by F. Hirzebruch
after talk at the MPI, in which one of us had sketched a less geometric proof
of the proposition.

There is another question which is related to the result above: Fix a closed,
oriented, 6-dimensional differentiable manifold X. Which pairs (a, b) of
integers with ¢ = 0(mod2) and b = 0(mod 24) occur as Chern numbers
c? and c¢,c, of almost complex structures on X, and in how many ways?

For manifolds with b,(X) = 1 the Chern numbers determine the almost
complex structure. For manifolds with », > 1 this is no longer true. It is
possible to construct infinitely many distinct almost complex structures with
the same Chern numbers on a hypersurface of bidegree (3,3) in P2 X P2.

An almost complex structure [fx] on a differentiable 6-manifold X is said
to be integrable if Iy is homotopic to the classifying map of a complex 3-fold.
We are not aware of any example of an almost complex 6-manifold which is
known not be integrable. On the other hand, it is also unknown whether or
not the Chern numbers ¢, ¢;c, of integrable almost complex manifold are
topological invariants. The following remark might therefore be of some
nterest:

PROPOSITION 10. If the Chern numbers of complex 3-folds are topo-
logical invariants, then there exist almost complex structures which are not
integrable.

Proof. Consider a closed, oriented differentiable 6-manifold X without
2-torsion in H3(X, Z). Fix any almost complex structure on X with first
Chern class W e H?(X, Z).

Every element x € H?(X, Z) defines a new almost complex structure
on X with first Chern class W + 2x, and it is easy to see that these two
almost complex structures have the same Chern numbers if and only if x
satisfies the equations p;(X)-x =0, and 3W2-x+ 6W - x2 + 4x3 = 0.

Suppose now (X, W) is integrable, p,(X) # 0, and choose x e H?*(X,Z)
such that p,;(X) - x # 0. Then clearly, either none of the almost complex

manifolds (X, W + 2x) is integrable, or the Chern numbers of complex 3-folds
are not topologically invariant.
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REMARK 12. It is very likely that there exist non-integrable almost
complex structures on manifolds X as above, but probably this is hard to
prove. It is also not unlikely that the Chern numbers of complex 3-folds are
not topological invariants. A possible way to check this would be, to run a
computer search for 3-folds given by certain standard constructions.

4.2 STANDARD CONSTRUCTIONS

For later use we investigate the topological invariants of complex 3-folds
which can be obtained by certain simple standard constructions like complete
intersections, simple cyclic coverings, blow-ups of points and curves, and
projective bundles.

PrOPOSITION 11 (Libgober/Wood). Let X C P3**" be a smooth
complete intersection of multidegree d = (d,, ...,d,). Choose a normalized
basis ee H*(X,Z), and let ce€ H*(X,Z) be defined by ¢e(e) = 1.
Then the invariants of X are:

Fx(xe) = dx® where d=1],_,

pX)y=d@d+r—Y,_,d)e, and

bi(X)=4—-4[4+r—%,_,d)*-3@4+r-3,
+2(4+r— Y, _,d)].

Proof. [L/W].

r

di,w,(X)=@G+r- Y%,

i:

]di)e’

r

_d) @G +r= Y, d))

PROPOSITION 12. Let X be a smooth, I-connected, complex projective
3-fold, and let n:X' — X beasimple cyclic covering of degree d branched
along a non-singular ample divisor B €|L®? |. X’ is smooth, projective,
I-connected, and nn*:H?*(X,Z)—> H*(X',Z) is an isomorphism. The
invariants of X and X' are related by the formulae:

(¥ Fyr = dFy, wa(X7) — T wy(X) = (d — Dr*er(L),
PrX) — w*py(X) = (1 —d) (1 + d)n*ey(L)?, and
by(X) = dby(X) + (d — 1) (b2(B) — 2b:(X)) .

Proof. X'is clearly smooth and projective. By a theorem of M. Cornalba
n: X’ — X is a 3-equivalence, i.e. m4: @, (X") = m;(X) is bijective for i < 2,
and surjective for i = 3[Co]. X’ is therefore 1-connected, and n*: H*(X, Z)
— H2(X',Z) is an isomorphism. The relation between Fy. and Fyx is
obvious, whereas the formula for b;(X’) follows from =,;(B) = {1} and
standard properties of Euler numbers.
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In order to calculate w,(X’') and p;(X’) we compute the Chern
classes of X':c;(X') - n*c;(X) =0 -d)n*c; (L), c2(X") — n*c,(X)
=1 -d)yn*[e;(X)ei(L) — dei(L)?].

The latter formulae follow from the description of X’ as a divisor in
the total space of the line bundle L.

EXAMPLE 9. Let X be a d-fold, simple cyclic covering of P3 branched
along a smooth surface B C P3 of degree dl,/>1. Let e e H*(X,Z)
correspond to the preimage of a plane in P3. The invariants of X are
then given by:

Fx(xe)=dx3, w,(X) =@+ U -d)e,pi(X)=d[4+1 -d)A +d)I?]e
(e(e)=1),b5(X) = (d—1)(d?I* - 4d] + 6)dI .

PROPOSITION 13. Let cs:)A( — X be the blow-up of a complex 3-fold
X ina point, and let e € H?>(X,Z) be the class of the exceptional divisor.
The invariants of X and X are related by the following formulae:
F3(c*h+xe)=Fx(h) +x? ¥V he HX(X,Z),x € Z, w,(X) = 0% wy(X),
P1(X) =c*pi1(X) + 4(e? —c*ci(X) - e), b3(X) = b3(X) .

Prvof. Standard arguments, see [G/H]. The Chern classes are related
by ¢;(X) = 6*ci(X) — 2e,c,(X) = 6*c,(X).

PROPOSITION 14. Let o:X— X be the blow-up of a complex 3-fold
X along a smooth curve C of genus g, and let ec H 2(X Z) be the
class of the exceptional divisor. The invariants of X and X are

related by:
Fi(o*h+xe) = Fx(h) —3h - Cx?*— degN¢c,xx* ¥V he H*(X, Z),
x € Z,wy(X) = 6*wy(X) + e, py(X) = 6*py (X) + (e — 26*C),
by(X) = b5 (X) + 2g .

_ Proof [G/H]. The Chern classes are given by cl(X) = oc*c(X)
~ ¢, cz(X) = 6*(c2(X)+ C) — 6*c,;(X) - e.

PROPOSITION 15.  Let E be a holomorphic vector bundle of rank 2 with
Chern classes c¢;(E),i= 1,2 overa I- connected, compact complex surface

Y, and let n:P(E)—>Y be the projective bundle of lines in the fibers
of E. The cup-form of P(E) is given by

Fey(h+x8) = x[Bh%) = Bei(E) - h)x + (1 (E)? — cy(E))x?] ,
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where & = c,(Zp (1), he H*(Y,Z), and xe€Z. The other topo-
logical invariants of P(E) are:

w2 (P(E)) = n*(w2(Y) + 1 (E)), pi (E))
= n*[c1(Y)?2 = 2¢:(Y) + 1 (E)? = 4c2(E)], b3(P(E)) = 0.

Proof. The Leray-Hirsch theorem identifies the cohomology ring
H*(P(E), Z) with the ring H*(Y, Z) [E]/ <t2+ c,(E) - £ + c,(E)> 5 this determines
the cup-form. In order to calculate the characteristic classes one uses the exact
sequence 0 = Zppy = A*E® Opiy(1) = Tppy = n* Ty~ 0. b3(P(E)) =0
follows from b;(Y) = 0 and the Leray-Hirsch theorem.

4.3 EXAMPLES OF 1-CONNECTED NON-KAHLERIAN 3-FOLDS

Recall that the Hessian of a symmetric trilinear form F e S3HY

on a free Z-module H of finite rank was defined as the composition
disc

HF:HE; S2HY = Z. In terms of coordinates &;,...,§, on H it is given

by the determinant det (affggj)’ where f € C[Hc¢]; is the homogeneous

cubic polynomial associated with F.

PROPOSITION 16. Let F be a symmetric trilinear form whose Hessian
vanishes identically. Then F is not realizable as cup-form of a Kdihlerian
3-fold.

Proof. Let X be a complex 3-fold with a Kédhler metric g. The Kéahler
class [w,] € H*(X,R) defines a multiplication map - [w,]: H?*(X,R)
— H4(X,R), which is an isomorphism by the Hard Lefschetz Theorem
[G/H]. In section 3.1 we have seen that this is not possible if the Hessian
of the cup-form vanishes.

COROLLARY 6. Cubic forms f € C[Hcl; which depend on strictly less
than b = rk;,H variables are not realizable as cup-forms of Kdhlerian
3-folds with b, = b.

By considering the Hessian of a cup-form over the reals one obtains further
conditions.

DEFINITION 4. Let F e S*HY be a symmetric trilinear form on a free
Z-module of rank b.

The Hesse cone of F is the subset 2¢r C Hg defined by
Hp:={h e Hgl|(~1)bdet(F'(h)) <0}.
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The index cone Jr of F is the subset Jr:={h¢€ #r| F'(h) € S?Hy
has signature (1, —1,..., — 1)}.

Clearly /ris an open subcone of 7 which coincides with o7 iff b < 2.

THEOREM 5. Let Fye S3H?(X,Z)" be the cup-form of a smooth
projective 3-fold with h%2(X)=0. Then Fx has a non-empty index
cone.

Proof. Let h € H2(X, Z) be the dual class of a hyperplane section Y in
some projective embedding. The inclusion i: Y & X induces a mono-
morphism i*: H2(X,Z) = H*(Y,Z) by the weak Lefschetz theorem. The
symmetric bilinear form F (k) € S2H?*(X, Z)" is simply the pull-back of the
cup-form of Y under the inclusion i*; it is therefore non-degenerate by the
Hard Lefschetz theorem [L]. Applying the Hodge index theorem to Y we see
that the real bilinear form F% (k) € S2H?(X, R)Y must have one positive
and b — 1 negative eigenvalues. In other words: # € I, .

REMARK 13. This result has two applications: it provides topological
‘upper bounds’ for the ample cone of a projective 3-fold with A%2 = 0,
and if gives further restrictions on symmetric trilinear forms to be realizable
as cup-forms of projective 3-folds with A%2 = 0 if b > 4.

These applications will be discussed in section 5.

We will now describe examples of 1-connected, non-Kihlerian, complex
3-folds and determine their topological structure.

ExXAMPLE 10 (Calabi-Eckmann). E. Calabi and B. Eckmann have
defined complex structures X., depending on a parameter t, on the product
S3 x S§3[C/E]. Their manifolds are principal fiber bundles over P! x P!
whose  fiber and  structure group is the elliptic  curve
E. =C/z¢z2:,Im(7) > 0.

The Calabi-Eckmann manifolds are homogeneous, non-Kihlerian 3-folds
of algebraic dimension 2.

EXAMPLE 11 (Maeda). H. Maeda has generalized the Calabi-Eckmann
construction. He constructed fiber bundles X! over Hirzebruch surfaces
F,,n > 0, whose fiber and structure group are an elliptic curve E, and
Aut(E;) respectively [M]. X. is again diffeomorphic to S3 x S3, and
therefore non-Kéahlerian. Maeda’s manifolds X! are homogeneous if and
only if n = 0 in which case they are Calabi-Eckmann 3-folds.
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The Calabi-Eckmann construction can also be generalized in the following
way:

Let S2 X S* be the non-trivial S4-bundle over S2, i.e. S2 X S* is the
unique 1-connected, closed, oriented, differentiable 6-manifold with
H,(S*%x S*Z)=7Z and b; =0, whose cup-form and Pontrjagin class
vanish, but whose Stiefel-Whitney class w, is non-zero.

THEOREM 6. For any integer b >0 there exist compact complex
3-folds X,, and X, if b=>=1, which are homeomorphic to
#bSZXS4#b+1S3XS3, and SZ§<84#b_1S2XS4#b+IS3><Sg.

Proof. Let Y be a l-connected, compact complex surface with
p.(Y) =0 and b,(Y) > 2, and let E = C/r be the elliptic curve associated
to the lattice I' C C. We want to construct the required 3-folds as total
spaces of principal E-bundles over Y. Let c: H,(Y,Z) — I" be an arbitrary
epimorphism. The corresponding cohomology class ¢ € H2(Y,I") defines a
topological principal bundle over Y with fiber and structure group £ = C/r
as follows immediately from the identification of the classifying space
BE = K(T, 2).

Let 7y (E) be the sheaf of germs of holomorphic maps from Y to £. We
have a short exact sequence 0 > I' = Zy — Zy(E) — 0 and a corresponding
exact cohomology sequence

— HU(Y, &y) = H'(Y, Oy(E)) > HX(Y,T) = HX(Y, #y) =

By our assumptions & is an isomorphism, so that every topological prin-
cipal E-bundle admits a holomorphic structure. Let X be the total space
of such a bundle corresponding to a surjective map c: H,(Y,Z) = I'. The
homotopy sequence of the fibration p: X — Y yields the sequence

0 - 1,(X) 3 m,(Y) = () = 71 (X) S m,(Y) > 0.

Since Y is l-connected, m,(Y) can be identified with H,(Y,Z), and
then the boundary map =,(Y)— m;(E) becomes the characteristic map
c: H,(Y,Z)— T of the bur;dle. This implies 7, (X) = {1}, whereas H,(X, Z)
is given by: 0 — H,(X,Z) = H,(Y,Z) > T — 0.

In particular, H,(X,Z) is free as a submodule of H,(Y,Z), and by
dualizing the last sequence we obtain an identification (via p*)

H*(X,Z)=H*(Y,Z)/r .
The cup-form Fy of X is therefore trivial. In order to calculate p,(X)
and w,(X), we use the exact sequence of tangent sheaves: 0 = Tx,y = Tx
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— p*Ty— 0. Since T,y is a trivial bundle, the characteristic classes
of X are simply the pullbacks of the corresponding classes of Y. But the
map p*:H*(Y,Z)—~ H*(X,Z) is zero, since <p*(g)u p*(a), [X]>
= <guUa,px[X]> =0 for all classes € € H*(Y,Z), and o € H?(Y, Z).

Thus p,(X) =0, and w,(X) is the residue of w,(Y) e H*(Y,Z,,)
modulo I'V/,pv.

The Euler characteristic of X is zero, so that from b,(X) = b,(Y) — 2
we find b3 (X) = 2(b,(Y) — 1). The system of invariants associated to the
manifold X is therefore given by

(bZ(Y) - 1: HZ(Y, Z)/rv, WZ(Y) (mOdrv/ZFV)’ 0’ Oa 0) ’
i.e. X is diffeomorphic to
o, -28% X S*p,ry-183 X S3if wy(Y) e I'V/orv

and to S2>~<S4#bz(y)‘352x S4#bz(y)_1S3XS3 if bz(Y)}S, and
wo(Y)eI'v/orv.

EXAMPLE 12 (Kato). In the two papers [K1], [K2] M. Kato studies the
class of compact, complex 3-folds X containing smooth rational curves with
neighborhoods biholomorphic to those of projective lines in P3. On this class
of 3-folds, called class L, he defines a semi-group structure + with neutral
element P3,

Kato’s connecting operation + is defined by removing ‘lines’ L; C X
from 3-folds X;,i = 1,2, and by identifying the complements X;\L; along
open sets U;\L; obtained from suitable neighborhoods U; C X;.

Starting with a certain elliptic fiber space X,; over the blow-up
of P! X P! in a point, he constructs a sequence of 3-folds X,:= X;
+ X,-1,n>=2. The 3-folds X, are 1-connected spin-manifolds with
H,(X,,Z) = Z. Their cup-forms Fy , and their Pontrjagin classes
pi(X,) are in terms of a (normalized) generator e, € H2(X,,Z) and its
dual class &, € H*(X,,Z) given by Fx (xe,) = (n— 1)x3 and p,(X,)
= 4(n — )¢, (g,(e,) = 1). The third Betti-number of X, is 4n.

In particular, X, is diffeomorphic to S2 x S*#,S% x S3, and X, is
diffeomorphic to P3#,S83 x S3. It is interesting to note that the Chern-
numbers c?, cic, of the X, are cf = 64(1 — n), c;c; = 24(1 — n), i.e. they
satisfy 8c,c, = 3cf. For projective manifolds of general type this equality is
characteristic for ball quotients [Y].
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EXAMPLE 13 (Twistor spaces). Let p:Z — M be the twistor fibration of
a closed, oriented Riemannian 4-manifold (M, g). Z carries a natural almost
complex structure which is integrable if and only if g is self-dual [A/H/S].

Examples of 1-connected 4-manifolds which admit self-dual structures are
S4,%,P2 and K3-surfaces.

The total spaces of their twistor fibrations are 1-connected complex 3-folds
which may be Moishezon for S* and § ,P2? [C], but which are usually
non-Kahler [Hi]. We leave it to the reader to calculate the topological
invariants of these 3-folds. There is an interesting relation between Twistor
spaces of connected sums and Kato’s connection operation + for class L
manifolds [K2], [D/F].

EXAMPLE 14 (Oguiso). In a recent preprint [O1] K. Oguiso constructs
examples of 1-connected, Moishezon Calabi-Yau 3-folds with very interesting
cup-forms. He proves that for every integer d > 1 there exists a smooth
complete intersection X of type (2, 4) in P> which contains a non-singular
rational curve C, of degree d with normal bundle Nc,x, = Zc,(—1)®2,

The 3-fold X, can now be flopped along C,, i.e. C, can be blown up
to P(Nc¢,/x,) = P! x P!, and then ‘blown down in the other direction’.
The resulting 3-fold X, is a 1-connected Moishezon manifold with trivial
canonical bundle and cup-form Fy, given by Fx, (xe;) = (d? — 8)x3. Here
e, € H*(X,,7Z) is the normalized generator corresponding to the strict
transform of the negative of a hyperplane section of X. The Pontrjagin
class of X, is p,(Xy) = (112 + 4d)e, where ¢, € H*(X,,Z) denotes the
generator with €,(e;) = 1. Since the Euler-number does not change under a
flop we have b;(X,) = 180 for every d.

5. COMPLEX 3-FOLDS WITH SMALL b,

In this section we investigate the following natural problem: Which
cubic forms can be realized as cup-forms of compact complex 3-folds? For
small b, something can be said: Any core of a 1-connected, closed, oriented
differentiable 6-manifold with H, (X, Z) = Z is homotopy equivalent to the
core of a l-connected complex 3-fold. In the case b, = 2, at least every
discriminant A is realizable by a complex manifold. If b, = 3 we can realize
all types of complex cubics with one exception, the union of a smooth conic
and a tangent line. In addition to these realization results we prove a finiteness
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