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The number of integral classes in these orbits is therefore finite. We have,

however, an even stronger finiteness theorem for stable ternary cubics.

Proposition 7. Let H be a free Z-module of rank 3. There exist only

finitely many classes of symmetric trilinear forms Fe S3HV with a fixed
discriminant A 0.

Proof In terms of Arnhold's invariants S and T, A is given by

A S3 - T2. By a theorem of C. Siegel [Si], the diophantine equation

S3 - T2 A has only finitely many integral solution (S, T) for any integer

A ^ 0. For each of these solutions the corresponding point in S3Hvc/Sl(hc)

lies outside of the discriminant curve, so that the 7i-fiber over it is a closed

SL(J7c)-orbit. The finiteness of the class number then follows from the

Borel/Harish-Chandra theorem.

A famous special case of Siegel's theorem is Bachet's equation
S3 - T2 2; it has only the two obvious solutions (3, ±5).

Remark 10. To get finiteness results for ternary cubic forms it is not
sufficient to fix the J-invariant (instead of the discriminant): The forms

fm X3 + XZ2 + Z3 + mY2Z, m e Z\{0}, all have the same /-invariant,
but they are not equivalent, even over Q, since they have bad reduction at

different primes p\m.

4. Invariants of complex 3-folds

In this section we begin to investigate the topology of 1-connected,

compact, complex 3-folds. After a brief discussion of the possible systems of
Chern numbers of almost complex 6-manifolds, we study the behaviour of
the topological invariants of complex 3-folds under certain standard

constructions, like e.g. branched coverings, or blow-ups of points and curves.
Then we describe some interesting examples of 1-connected, non-Kählerian
3-folds, including a new construction method which generalizes the Calabi-
Eckmann manifolds. These examples will be needed in the next section in order
to realize complex types of cubic forms as cup-forms of complex 3-folds.

4.1 Chern numbers of almost complex structures
Let A be a closed, oriented, 6-dimensional differentiable manifold. The

tangent bundle of X is induced by a classifying map tx> X BSO(6) which
is unique up to homotopy. By an almost complex structure on X we mean
the homotopy class [tx] of a lifting tx: X -> BU(3) of tx to BU{3).
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Proposition 8. Every closed, oriented, 6-dimensional C°°-manifold X
without 2-torsion in H3(X, Z) admits an almost complex structure. There
is a 1-1 correspondence between almost complex structures on X and integral
lifts W e H2(X,Z) of w2(X). The Chern classes ct of the almost
complex manifold (X, W) are given by cx W, c2 \ (W2 - px {X)).

Proof (cf. [W]). The obstructions against lifting tx to BU{3) lie

in the cohomology groups Hi+ l(X, Ki(SO(6)/U{3))f i 0, 1, 5.

Since SO (6)/U{3) P3 has only one nontrivial homotopy group
n2{SO(6)/u(3)) Z in dimensions i ^ 5, there is in fact only one obstruction

o(tx) eH3(X, Z), and this obstruction can be identified with the image
of w2(X) under the Bockstein homomorphism ß : H2(X, Z/2) H3 (X, Z).
Since H3(X, Z) has no 2-torsion by assumption, $w2(X) must be equal to

zero, so that X has at least one almost complex structure [tx] e [X,BU(3)].
Standard homotopy arguments show now that the map, which assigns to an
almost complex structure [tx] its first Chern class t%c\, induces a 1-1

correspondence between integral lifts WeH2(X,Z) of w2(X) and homotopy
classes of liftings of [tx] to BU(3).

The second Chern class c2 of the almost complex manifold (X, W) is

determined by W2 - 2c2 P\{X).

The Chern numbers c\, Cj c2, c3 of an almost complex manifold X
of real dimension 6 satisfy the following congruences: Cj 0(mod2),
Ci c2 0(mod 24), c3 0(mod2). Conversely, given a triple (a,b,c) of
integers a 0(mod2), b 0(mod24), and c 0(mod2), there always
exists an almost complex manifold X of dimension 6 with Chern numbers

c\ a, Ci c2 b, c3 c.

It is not totally clear, however, that one can find a connected manifold X
with prescribed Chern numbers [HI].

Proposition 9. Every triple (a, b, c) e Z®3 satisfying a 0(mod2),
b 0(mod 24), c 0(mod 2) is realizable as the Chern numbers ofan almost

complex 6-manifold.

Proof. Consider the complete intersection V(f, g) C P5 defined by the

polynomials f(z) z20 + z\ + 2z\ - z] - z\ - 2z\, and g(z) z40 + z\
+ 2z2 - fs — z\ - 2za5 [We]. V{f,g) is a singular 3-fold with 90 ordinary
double points, and every small resolution V of these nodes is a (not necessarily

projective) Calabi-Yau 3-fold with Euler number 4. Suppose now that a

prescribed triple (a, b, c) e Z®3 is realized by a possibly disconnected

almost complex manifold X UieIXi. If we form the connected sum
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X' of the Xj, we obtain a connected almost complex manifold X' with
Chern numbers c\ a, CiC2 b, but with c3 c - 2( 11\ - 1).

If |/| > 1 take the connected sum of X' with |/| - 1 copies of the

complex manifold V. Since V is Calabi-Yau, the Chern numbers c\ and C\C2

remain unchanged, whereas the Euler number of Xf\j\ _ i V becomes c3 c.

Remark 11. The above argument has been suggested by F. Hirzebruch

after talk at the MPI, in which one of us had sketched a less geometric proof
of the proposition.

There is another question which is related to the result above: Fix a closed,

oriented, 6-dimensional differentiable manifold X. Which pairs (a, b) of
integers with a 0(mod2) and Z? 0(mod24) occur as Chern numbers

c\ and CiC2 of almost complex structures on X, and in how many ways?

For manifolds with b2(X) 1 the Chern numbers determine the almost

complex structure. For manifolds with b2> 1 this is no longer true. It is

possible to construct infinitely many distinct almost complex structures with
the same Chern numbers on a hypersurface of bidegree (3, 3) in P2 x P2.

An almost complex structure [tx] on a differentiable 6-manifold X is said

to be integrable if tx is homotopic to the classifying map of a complex 3-fold.
We are not aware of any example of an almost complex 6-manifold which is

known not be integrable. On the other hand, it is also unknown whether or
not the Chern numbers c\,cxc2 of integrable almost complex manifold are
topological invariants. The following remark might therefore be of some
interest :

Proposition 10. If the Chern numbers of complex 3-folds are
topological invariants, then there exist almost complex structures which are not
integrable.

Proof. Consider a closed, oriented differentiable 6-manifold X without
2-torsion in H3(X,Z). Fix any almost complex structure on X with first
Chern class W e H2(X,Z).

Every element x e H2(X, Z) defines a new almost complex structure
on X with first Chern class W + 2x, and it is easy to see that these two
almost complex structures have the same Chern numbers if and only if x
satisfies the equations px(X) • x 0, and 3 W2 • x + 6 W • x2 + 4x3 0.

Suppose now (X, W) is integrable, px(X) 0, and choose x e H2(X, Z)
such that Pi(X) • x ± 0. Then clearly, either none of the almost complex
manifolds (X, W + 2x) is integrable, or the Chern numbers of complex 3-folds
are not topologically invariant.
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Remark 12. It is very likely that there exist non-integrable almost

complex structures on manifolds X as above, but probably this is hard to

prove. It is also not unlikely that the Chern numbers of complex 3-folds are

not topological invariants. A possible way to check this would be, to run a

computer search for 3-folds given by certain standard constructions.

4.2 Standard constructions
For later use we investigate the topological invariants of complex 3-folds

which can be obtained by certain simple standard constructions like complete
intersections, simple cyclic coverings, blow-ups of points and curves, and

projective bundles.

Proposition 11 (Libgober/Wood). Let X C P3 + r be a smooth

complete intersection of multidegree d=(di, dr). Choose a normalized
basis e e H2(X, Z), and let sei/4 (A, Z) be defined by s(e) 1.

Then the invariants of X are:

Fx(xe) dx3 where d Ü/= i di9 w2(X) (4 + r - £] } di)e,

Pi(X) <i(4 + r - xd])z, and

b-i(X) 4 - I [(4 4- r - ti= dX-3(4 + r - Z'i=1d,) (4 + r -
+ 2(4 + r- i; ,r/;)|

Proof. [L/W].

Proposition 12. Let X be a smooth, 1-connected, complex projective
3-fold, and let n : X' X be a simple cyclic covering of degree d branched

along a non-singular ample divisor B e | L ®d |. X' is smooth, projective,
1-connected, and n* : H2{X, Z) H2(X', Z) is an isomorphism. The

invariants of X and X' are related by the formulae:

(n*)*Fx< dFx, w2(Xf) - n*w2(X) (d - l)n*cfL),
Pi(X') - 7i *Pi (X) (1 - d) (1 + d) 7i * c i (//)2, and

b3(X') db3(X) + (d- 1) (b2(B) - lb2{Xj)

Proof X' is clearly smooth and projective. By a theorem of M. Cornalba

7t : A' - A is a 3-equivalence, i.e. 7t* : 7u(X') ^ 7i/ (A) is bijective for / ^ 2,

and surjective for i 3 [Co]. X' is therefore 1-connected, and n* : H2{X, Z)

H2(X\ Z) is an isomorphism. The relation between Fx> and i7^ is

obvious, whereas the formula for b3(X') follows from nfB) {1} and

standard properties of Euler numbers.
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In order to calculate w2(Xr) and P\{X') we compute the Chern

classes of X': C\(X') - n*Ci(X) (1 - d)n*Ci(L), c2{X') - n*c2(X)
(1 -d)n*[cl(X)cl(L)-dcl(L)2].
The latter formulae follow from the description of X' as a divisor in

the total space of the line bundle L.

Example 9. Let X be a <i-fold, simple cyclic covering of P3 branched

along a smooth surface B CP3 of degree dl,l^l. Let eeH2(X,Z)
correspond to the preimage of a plane in P3. The invariants of X are
then given by:

Fx(xe) dx\ w2(X) (4 + (1 - d)l)e,Pl(X) d[4 + (1 - d){ 1 + d)l2] s

(e(e) « 1 ),b3(X) (d- 1) (d2l2 - 4dl + 6)dl

Proposition 13. Let o:X->X be the blow-up of a complex 3-fold
X in a point, and let e e H2(X, Z) be the class of the exceptional divisor.
The invariants of X and X are related by the following formulae:

FHo*h + xe) =Fx(h) + x3 V h e H2(X, Z), x e Z, w2(X) o*w2(X),
pdX) a*pt (X)+ 4(e2-a*Ci(X)e), b3(X) b3(X)

Proof. Standard arguments, see [G/H], The Chern classes are related
by e,(X) o*Cl(X)- 2e, c2(X)a*c2(X).

Proposition 14. Let o:X^X be the blow-up of a complex 3-fold
X along a smooth curve C of genus g, and let Z) be the
class of the exceptional divisor. The invariants of X and X are
related by:

Ff(o*h + xe) Fx{h)-3h Cx2- 3 V H2(X, Z),
x eZ, w2(X) o *w2(X)+ e,pfX) a*pfX) + (e2 - 2o*C),

b3(X) b3(X) + 2g

Proof [G/H], The Chern classes are given by a*^^)- c, c2(X) o*(c2{X) + C) - o*cfX) e.

Proposition 15. Let E be a holomorphi
Chern classes Cj(E), i 1,2 over a 1-connected, compact complex surface
Y, and let n :P (E)-> Ybe the projective bundle of lines in the fibers
of E. The cup-form of Y(E) is given by

Fv(E)(h +x& x[(ih2) - (301(E) • h)x+ (c,(E)2 - c2{Ej)x2]
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where £, c{ (^P(j-)(1)), h e H2(Y, Z), and x e Z. 77ze

topological invariants of P(ii) are:

w2(V{E)) n*(w2{Y) + Cl(E))iPl(E))
n *[cfY)2 - 2c2(Y) + Cl(E)2 - 4c2(E)l b3(P(E)) 0

Proof. The Leray-Hirsch theorem identifies the cohomology ring
H*(P(E), Z) with the ring H* (Y, Z) [£,]/<^2 + Cl(E) ^ + c2(e)> ; this determines

the cup-form. In order to calculate the characteristic classes one uses the exact

sequence 0 -> YR{E) n*E (x) Tr{E) n*TY~+ 0. b3(P(E)) 0

follows from Z?i(T) 0 and the Leray-Hirsch theorem.

4.3 Examples of 1-connected non-Kählerian 3-folds

Recall that the Hessian of a symmetric trilinear form F e S3HV

on a free Z-module H of finite rank was defined as the composition

Hf: S2Hw Z. In terms of coordinates on H it is given

by the determinant det (a^.), where / eC[//c]3 is the homogeneous
cubic polynomial associated with F.

Proposition 16. Let F be a symmetric trilinear form whose Hessian
vanishes identically. Then F is not realizable as cup-form of a Kählerian
3-fold.

Proof. Let X be a complex 3-fold with a Kähler metric g. The Kähler
class [coJ e H2(X,R) defines a multiplication map • [coj : H2(X, R)

H4{X, R), which is an isomorphism by the Hard Lefschetz Theorem

[G/H]. In section 3.1 we have seen that this is not possible if the Hessian

of the cup-form vanishes.

Corollary 6. Cubic forms f e C [Hc\ 3 which depend on strictly less

than b rkzH variables are not realizable as cup-forms of Kählerian

3-folds with b2 - b.

By considering the Hessian of a cup-form over the reals one obtains further
conditions.

Definition 4. Let F e S3HV be a symmetric trilinear form on a free
Z-module of rank b.

The Hesse cone of F is the subset XYF C HR defined by
YYF: {h e HR | - \)b det(F'(A)) < 0}.
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The index cone fF of F is the subset fF : {h e 2fp\Ft (h) e S2H R

has signature (1, - 1, - 1)}.

Clearly fF is an open subcone of XfF which coincides with Xfp iff b ^ 2.

Theorem 5. Let Fx e S3H2(X,Zy be the cup-form of a smooth

projective 3-fold with h°'2(X) 0. Then Fx has a non-empty index

cone.

Proof. Let h e H2(X, Z) be the dual class of a hyperplane section Y in

some projective embedding. The inclusion / : Y ^ X induces a

monomorphem /* : H2(X, Z) - H2(Y, Z) by the weak Lefschetz theorem. The

symmetric bilinear form Fx(h) e S2H2(X, Z)v is simply the pull-back of the

cup-form of Y under the inclusion /*; it is therefore non-degenerate by the

Hard Lefschetz theorem [L]. Applying the Hodge index theorem to Y we see

that the real bilinear form Fx(h) e S2H2(X, R)v must have one positive
and b — 1 negative eigenvalues. In other words: h e IFx.

Remark 13. This result has two applications: it provides topological
'upper bounds' for the ample cone of a projective 3-fold with h°>2 0,

and if gives further restrictions on symmetric trilinear forms to be realizable

as cup-forms of projective 3-folds with /z0'2 0 if b ^ 4.

These applications will be discussed in section 5.

We will now describe examples of 1-connected, non-Kählerian, complex
3-folds and determine their topological structure.

Example 10 (Calabi-Eckmann). E. Calabi and B. Eckmann have
defined complex structures XT, depending on a parameter t, on the product
S3 x S3[C/E]. Their manifolds are principal fiber bundles over P1 xP1
whose fiber and structure group is the elliptic curve
FT C/z@Zt, Im(x) > 0.

The Calabi-Eckmann manifolds are homogeneous, non-Kählerian 3-folds
of algebraic dimension 2.

Example 11 (Maeda). H. Maeda has generalized the Calabi-Eckmann
construction. He constructed fiber bundles X[ over Hirzebruch surfaces
¥„, n > 0, whose fiber and structure group are an elliptic curve ET and
Aut(Et) respectively [M]. X\ is again diffeomorphic to S3 x and
therefore non-Kählerian. Maeda's manifolds X'T are homogeneous if and
only if n 0 in which case they are Calabi-Eckmann 3-folds.
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The Calabi-Eckmann construction can also be generalized in the following
way:

Let S2 x S4 be the non-trivial S4-bundle over S2, i.e. S2 x S4 is the

unique 1-connected, closed, oriented, differentiable 6-manifold with
H2(S2 x S4, Z) Z and b3 0, whose cup-form and Pontrjagin class

vanish, but whose Stiefel-Whitney class w2 is non-zero.

Theorem 6. For any integer b ^ 0 there exist compact complex
3-folds Xbi and Xb if b ^ 1, which are homeomorphic to

US2 x S4#b+1S3 x S3, and S2 x S'h^S2 x S4$b + iS3 x S3.

Proof. Let Y be a 1-connected, compact complex surface with

pg{Y) 0 and b2(Y) ^ 2, and let E C/r be the elliptic curve associated

to the lattice T C C. We want to construct the required 3-folds as total
spaces of principal ^-bundles over Y. Let c: H2(Y, Z) -> T be an arbitrary
epimorphism. The corresponding cohomology class c e H2(Y,T) defines a

topological principal bundle over Y with fiber and structure group E — C/r
as follows immediately from the identification of the classifying space

BE K(T, 2).

Let $y{E) be the sheaf of germs of holomorphic maps from Y to E. We

have a short exact sequence 0 F âY 0Y{E) 0 and a corresponding

exact cohomology sequence

0y{E))VHT)-»• fY)~*

By our assumptions ô is an isomorphism, so that every topological principal

E-bundle admits a holomorphic structure. Let X be the total space

of such a bundle corresponding to a surjective map c: H2(Y, Z) -> T. The

homotopy sequence of the fibration p:X^> Y yields the sequence

0 - n2(X) ^ n2(Y) -> n^E)-»^ - 0

Since Y is 1-connected, n2(Y) can be identified with H2(Y,Z), and

then the boundary map n2(Y) -> iii(E) becomes the characteristic map

c : H2 (Y, Z) -> T of the bundle. This implies n} (X) {1}, whereas H2 (X, Z)
is given by: 0 -» H2(X, Z) ^ H2(Y, Z) 4 r - 0.

In particular, H2(X,Z) is free as a submodule of H2(Y, Z), and by

dualizing the last sequence we obtain an identification (via p*)

H2(X,Z) H2(Y,Z)/tv
The cup-form Fx of X is therefore trivial. In order to calculate P\{X)

and w2(X), we use the exact sequence of tangent sheaves: 0Tx/Y~^ Tx
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-/?*7Y->0. Since TX/y is a trivial bundle, the characteristic classes

of X are simply the pullbacks of the corresponding classes of Y. But the

map p*://4(T,Z) -*H4(X,Z) is zero, since <p*(B) u p*(a), [X] >
< s u a,p* [X] > 0 for all classes 8 e H4(Y, Z), and a e H2(Y, Z).
Thus pi(X) 0, and w2(X) is the residue of w2(Y) e H2(Y, Z/2)

modulo Tv/2rv.
The Euler characteristic of X is zero, so that from b2(X) b2(Y) - 2

we find b2(X) 2(b2(Y) - 1). The system of invariants associated to the

manifold X is therefore given by

(My) - 1, Z)/rv, w2(modrv/2rv),0, 0, 0)

i.e. X is diffeomorphic to

h2m-2S2xS*h2(r)-iS3 x S3 if e rv!r.
and to S2 x S4h,2(Y)^S2 x S4lb,m.iS3 x S3 if b2(Y) ^ 3, and

w2(y) $ rv/2rv •

Example 12 (Kato). In the two papers [Kl], [K2] M. Kato studies the

class of compact, complex 3-folds X containing smooth rational curves with
neighborhoods biholomorphic to those of projective lines in P3. On this class

of 3-folds, called class L, he defines a semi-group structure + with neutral
element P3.

Kato's connecting operation + is defined by removing Tines' L, C Xt
from 3-folds Xf9i~ 1, 2, and by identifying the complements Xj\Lj along

open sets C7/\L/ obtained from suitable neighborhoods £/, C Xl.
Starting with a certain elliptic fiber space Xx over the blow-up

of P1 x P1 in a point, he constructs a sequence of 3-folds Xn : Xx
+ Xn^ x, n ^ 2. The 3-folds Xn are 1-connected spin-manifolds with
H2(Xn, Z) Z. Their cup-forms FXfl, and their Pontrjagin classes

px{Xn) are in terms of a (normalized) generator en eH2(Xn,Z) and its
dual class &neH4(Xn, Z) given by FXn (xe„) (n - l)x\ and px(Xn)

4(n - l)s„ (e„(e„) 1). The third Betti-number of Xn is An.
In particular, Xx is diffeomorphic to S2 x S4$2S3 x S3, and X2 is

diffeomorphic to P3U3xS3. It is interesting to note that the Chern-
numbers c],cxc2 of the X„ are cj 64(1 - n), cxc2 24(1 - n), i.e. they
satisfy 8c!C2 3c\. For projective manifolds of general type this equality is
characteristic for ball quotients [Y].
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Example 13 (Twistor spaces). Let p : Z -> M be the twistor fibration of
a closed, oriented Riemannian 4-manifold (M, g). Z carries a natural almost

complex structure which is integrable if and only if g is self-dual [A/H/S].
Examples of 1-connected 4-manifolds which admit self-dual structures are

S4J„P2, and TO-surfaces.
The total spaces of their twistor fibrations are 1-connected complex 3-folds

which may be Moishezon for S4 and jj „P2 [C], but which are usually
non-Kähler [Hi]. We leave it to the reader to calculate the topological
invariants of these 3-folds. There is an interesting relation between Twistor

spaces of connected sums and Kato's connection operation + for class L
manifolds [K2], [D/F].

Example 14 (Oguiso). In a recent preprint [Ol] K. Oguiso constructs

examples of 1-connected, Moishezon Calabi-Yau 3-folds with very interesting
cup-forms. He proves that for every integer d ^ 1 there exists a smooth

complete intersection X'd of type (2,4) in P5 which contains a non-singular
rational curve Cd of degree d with normal bundle NC(l/xd $cd{~ l)®2.

The 3-fold X'd can now be flopped along Cd, i.e. Cd can be blown up
to P{NCd/xd) P1 x P1, and then 'blown down in the other direction'.
The resulting 3-fold Xd is a 1-connected Moishezon manifold with trivial
canonical bundle and cup-form FX(i given by FXd(xed) (d3 - 8)x3. Here

edeH2(Xd,Z) is the normalized generator corresponding to the strict
transform of the negative of a hyperplane section of The Pontrjagin
class of Xd is pi(Xd) (112 + 4d)zd where &d e H4(Xd, Z) denotes the

generator with zd{ed) 1. Since the Euler-number does not change under a

flop we have b2(Xd) 180 for every d.

5. Complex 3-folds with small b2

In this section we investigate the following natural problem: Which
cubic forms can be realized as cup-forms of compact complex 3-folds? For
small b2 something can be said: Any core of a 1-connected, closed, oriented

differentiable 6-manifold with H2(X, Z) Z is homotopy equivalent to the

core of a 1-connected complex 3-fold. In the case b2 2, at least every
discriminant A is realizable by a complex manifold. If b2 3 we can realize

all types of complex cubics with one exception, the union of a smooth conic

and a tangent line. In addition to these realization results we prove a finiteness
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