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REMARK 6. It is not difficult to show that F’ is not injectiye if afld
only if there exists a proper quotient H¢ of Hc, and a form Fe S3H{
whose pull-back to Hc is the given form F. This means that the Hessians of
cubic polynomials f € C[H¢]; which ‘do not depend on all variables’ are
automatically zero.

The converse holds for forms in b < 4 variables, but not in general [G/N].

3.2 THE GIT QUOTIENT S3H (/srue)

Let V:= S3H{ be the vector space of complex cubic forms. The
reductive group G:= SL(H¢) acts rationally on V, and therefore has a
finitely generated ring C[V]¢ of invariants [H]. The inclusion C[V]©¢
C C[V] induces a regular map m: V — V//; onto the affine variety V/g
with coordinate ring C[V']¢. It is well known that = is a categorical quotient,
which is G-closed and G-separating, so that V//s; parametrizes precisely the
closed G-orbits in V. Recall that a point v € V is semi-stable if o € G - v,
and that v is stable if G - v is closed in V and the isotropy group G, is
finite [M/F]. Denote the G-invariant, open subsets of semistable (stable)
points in V by Vss(V's).

The complement V\Vs = n-!(m(0)) consists of ‘Nullformen’, i.e.
forms for which all polynomial invariants vanish. The open subset of stable
points, which includes in particular all non-singular forms, has a geometric
quotient, given by the restricted map = | Vs: Vs — n(V*).

REMARK 7. Let Ao € GL(H) be a fixed automorphism of determinant
detAo = — 1, e.g. Ao = —idy if b is odd. A, induces a Z,,-action on
S3HV/SL(H) and on S3H ( /sy uc, for which the map c is equivariant.

Let G C GL(H¢) be the semi-direct product of SL (H¢) and Z,,
generated by Ao and SL(Hc). The invariant ring C[V] G has an important
topological interpretation: it consists of all polynomial invariants of complex

cohomology rings of 1-connected, closed, oriented 6-dimensional manifolds
with torsion-free homology.

EXAMPLE 5. Binary cubics (b = 2)

Choose linear coordinates X, Y on Hc, and write a cubic polynomial
S e C[X, Y]sin the form f = aoX? + 3a, X2Y + 3a,XY? + a;Y3.

We use ay, a1, ay, as as coordinates on S3HY, so that C[S3H (]
= Clao, ai, a;, a;]. The discriminant A(f) of f is a homogeneous
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polynomial of degree 4 in the coefficients ay, a;, a2, a4, explicitly given
by A(f) = aja; — 3ata; — 6asa,aza; + 4apal + 4a’a;.
The discriminant generates the ring of SL (H¢)-invariants,

C[S3H (]5:UHe) = C[A],

and it is easy to see that A is also Z,,-invariant. A cubic form f is stable if
and only if it is semistable, if and only if it is non-singular [N]. The cone of
nullforms © ~1(7(0)) is the affine hypersurface (A)o C S3HY; it has a nice
geometric interpretation in terms of the Hessian. The Hessian of the cubic f
is the quadratic form

H; = 62[(apa, — a?) X2+ (apa; — a;a)) XY + (aya; — a3) Y?] .

The set of forms f with vanishing Hessians H, form the affine cone over
the rational normal curve in P(S3H ¢); the hypersurface of nullforms is the
cone over the tangential scroll of this curve. There are 4 different types of
SL(Hc)-orbits in S3H (¢, represented by the normal forms XY (X + AY),
X?Y, X3, 0. The first type is stable, the others are nullforms, the orbits of X3
and 0 have vanishing Hessians.

EXAMPLE 6. Ternary cubics (b = 3)

The ring of SL(H¢)-invariants of ternary cubics is a weighted polynomial
ring in 2 variables, C[S3H ¢]5¢W¥c) = C[S, T] whose generators S, T have
been found by S. Aronhold [A]. S is a homogeneous polynomial of degree 4
in the coefficients of a cubic f, 7T is homogeneous of degree 6, both
polynomials are Z,,-invariant. For a cubic of the form f =aX?® + bY?3
+cZ*+ 6dXYZ,S and T are given by S =4d(d?— abc) and T = 8d°
+ 20abc(d?® — abc) respectively [P]. The general formulae, which take two
pages to write down, can be found in the book of Sturmfels [St]. The
discriminant of a form f is homogeneous of degree 12 in the coefficients
of f; in terms of Aronhold’s invariants S, 7 it is simply given by
A = S3 — T?. We obtain the following overall picture: The GIT quotient for
ternary cubics is an affine plane A? with coordinates S, 7. The complement
A2\(A)o, of the discriminant curve is the geometric quotient of stable
cubics. The m-fibers over a point (S, 7) # (0, 0) on the discriminant curve
(A) o consist of 3 types of SL(Hc)-orbits: nodal cubics with normal form
X3+ Y3+ 60aXYZ, reducible cubics formed by a smooth conic and a
transversal line (normal form: X3 + 60.XYZ), and cubics consisting of three
lines in general position (normal form: 6a.XYZ); these cubics are properly
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semi-stable for a # 0 with Aronhold invariants S = 4a*, T = 8a®. The fiber
of m over 0 contains 6 orbits with normal forms

Y:Z - X3, Y(X?-YZ),XY(X+Y), XY, X,

and 0, of which the last 4 types have vanishing Hessians. For more details we
refer to H. Kraft’s book [Kr].

REMARK 8. The natural C*-action f — A - f on cubic forms induces a
weighted action on the GIT quotient S*H (/s ey, 2 (S, T) = (A*S, A6 T).
The associated weighted projective space P!(4,6) with homogeneous
coordinates < S, T> is the good quotient for semi-stable plane cubic
curves. Its affine part P!\ (A), is the moduli space of genus-1 curves. The
PGL(Hc)-invariant J:= L gives the J-invariant of the corresponding

A
curve.

3.3 ARITHMETICAL ASPECTS

Let ¢: S3HY /sy = S*H(/spy be the map which associates to the
SL(H)-orbit <F> of a symmetric trilinear form F e S3H" the SL(H¢)-
orbit < F>¢ of its complexification. The c-fiber over <F > can be
identified with the subset (SL(Hc)  FnS3HY)/ st of S3HY/spm -
C. Jordan has shown that these subsets are finite provided the cubic form
f € C[Hc]; associated to F has a non-vanishing discriminant [J1]. Jordan’s
original proof, which is only two pages long, is somewhat hard to follow. The
following theorem of A. Borel and Harish-Chandra provides, however, a vast
generalization of Jordan’s finiteness result:

THEOREM 3 (Borel/Harish-Chandra). Let G be a reductive Q-group,
I' C G an arithmetic subgroup, &:G— GL(V) a Q-morphism, and
L CV a I'-invariant sublattice of Vqo. If veV has a closed G-orbit
in V, then G,n L/r Iis a finite set.

Proof. [B].

COROLLARY 4. Let Fe S’HY be a symmetric trilinear form on H.
If the SL(Hc)-orbit of F in S*H{ is closed, then the fiber
c U (<F>c) over <F>c s finite.

To check whether a SL(Hc¢)-orbit SL(H¢) - F is closed in S3H(, one
has a generalization of the Hilbert-criterion [Kr]: SL(H¢) - F is closed in
S3H{ if and only if for every l-parameter subgroup A: C* — SL(H(), for
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