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3. ALGEBRA AND ARITHMETIC OF CUBIC FORMS

Let H be a finitely generated free Z-module of rank b. In this section we
want to study algebraic and arithmetic properties of symmetric trilinear forms
F e S3HY on H which admit characteristic elements; ultimately we would
like to describe the classification of those forms under the action of the
general linear group GL(H), i.e. we like to investigate (part of) the
quotient S3HY/ g1 (my -

From what we have said in sections 1 and 2, this is clearly equivalent to
classifying the cohomology rings of 1-connected, closed, oriented,
6-dimensional manifolds without torsion, and with b, = b, b; = 0. Further-
more, up to finite indeterminancy, this is also equivalent to classifying the
homotopy types of these manifolds.

The proper setting for this arithmetic moduli problem can be found in
C. Seshadri’s paper [S]; here we investigate only its set-theoretic aspects.
Let H¢:= H ®7C be the complexification of H, and let S3H ¢/spm)
be the quotient of the reductive group SL (Hc¢). We obtain a natural map
c:S3HY/sp iy = S3H /sy, which allows us to break up the problem
into three parts: the description of the quotient S3 H (/5. (#.), the investiga-
tion of the fibers of ¢, and the study of the remaining Z,,-action on
S3HY/sr &y which is induced by the choice of an arbitrary automorphism
Ao € GL(H) of determinant detA, = — 1.

3.1 ALGEBRAIC PROPERTIES OF CUBIC FORMS

Let Hc = H®zC be as above, and denote by C[H]; the space of
homogeneous polynomials of degree 3 on Hc. There exists a linear polari-
zation operator Pol: C[H¢]; = S3H (, sending a homogeneous cubic poly-
nomial f € C[Hc]; to the symmetric trilinear form F = Pol(f) € S3HY.
which is related to f by the identity F(h, h, h) = 6f(h). We will usually
not distinguish between a cubic polynomial f and its associated form
F = Pol(f). On S3H there exists a polynomial function A:S3H} — C,
the discriminant, which is homogeneous of degree b - 22-1, and vanishes
in a form F if and only if the associated cubic hypersurface (f)o C P(Hc)
has a singular point; A is defined over Z and is clearly invariant under
the natural action of SL(H¢).

REMARK 4. Of course, a discriminant function A exists for forms

of arbitrary degree d; in the general case A is homogeneous of degree
b-(d-1)>"1on SYHY{.
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PROPOSITION 5.  Fix a symmetric trilinear form F e S*H¢ and an ele-
ment h e Hc\{0} with f(h)=0. The associated point <h> € P(H¢)
IS a singular point of the cubic hypersurface (f)o C P(Hc) if and only if
the linear form h*e H( is zero. The existence of at least one such point
Is equivalent to the vanishing of the discriminant.

Proof. From f(h+ tv) = f(h) + 3th?-v+ 3t2h - v? + 303 for every
veHc,teC we find %|of(h+tv) =3h2 v, ie. h?e HY defines the
differential of f in A.

REMARK 5. Q-rational points in (f). C P(H¢), and Q-rational singula-
rities of (f) o have geometric significance if the cubic f is defined by the cup-
form of a 6-manifold X. In fact, integral classes # € H?(X, Z) correspond
to homotopy classes of maps to P; such a map factors over P% C P if
and only if A3 = 0; if it factors over P C PZ, then clearly 42 = 0. The
converse will probably not always be true since, in general, the cohomology
ring does not determine the homotopy type.

In addition to the invariant discriminant A(f) of a polynomial f, we
will also need a fundamental covariant H,, the Hessian of f. Let
F = Pol(f) € S*H ¢ be the polarization of f € C[Hc];; the Hessian of f
can then be defined as the composition Hf:Hcﬂ S2H ¢ ¥ C, i.e. Hyis
the homogeneous polynomial function of degree b on H¢ given by
H;(h) = disc (F'(h)). In terms of linear coordinates &;, -+, &, on H one

finds the more familiar expression H, = det (6;‘?;] S )

PROPOSITION 6. Let Fe S*H(/ be a symmetric trilinear form. The
Hessian of F is identically zero if and only if there exists no element
h e Hc for which the map -+ h:Hc— H{ is an isomorphism.

Proof. H; is identically zero if and only if the symmetric bilinear
forms F!(h) € S?H (. are degenerate for every h € Hc. But this means that
none of the maps - h: Hec = H( is an isomorphism.

COROLLARY 3. Let Fe S*H({ be a form whose associated map
Ft':Hc— S*H{ is not injective. Then we have H;= 0.

Proof. Let k € Ker(F') be a non-zero element, and consider an
arbitrary element # € H¢. By definition of & we have F(k, h,v) = 0 for all
ve Hc,ie k-heH(is zero.
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REMARK 6. It is not difficult to show that F’ is not injectiye if afld
only if there exists a proper quotient H¢ of Hc, and a form Fe S3H{
whose pull-back to Hc is the given form F. This means that the Hessians of
cubic polynomials f € C[H¢]; which ‘do not depend on all variables’ are
automatically zero.

The converse holds for forms in b < 4 variables, but not in general [G/N].

3.2 THE GIT QUOTIENT S3H (/srue)

Let V:= S3H{ be the vector space of complex cubic forms. The
reductive group G:= SL(H¢) acts rationally on V, and therefore has a
finitely generated ring C[V]¢ of invariants [H]. The inclusion C[V]©¢
C C[V] induces a regular map m: V — V//; onto the affine variety V/g
with coordinate ring C[V']¢. It is well known that = is a categorical quotient,
which is G-closed and G-separating, so that V//s; parametrizes precisely the
closed G-orbits in V. Recall that a point v € V is semi-stable if o € G - v,
and that v is stable if G - v is closed in V and the isotropy group G, is
finite [M/F]. Denote the G-invariant, open subsets of semistable (stable)
points in V by Vss(V's).

The complement V\Vs = n-!(m(0)) consists of ‘Nullformen’, i.e.
forms for which all polynomial invariants vanish. The open subset of stable
points, which includes in particular all non-singular forms, has a geometric
quotient, given by the restricted map = | Vs: Vs — n(V*).

REMARK 7. Let Ao € GL(H) be a fixed automorphism of determinant
detAo = — 1, e.g. Ao = —idy if b is odd. A, induces a Z,,-action on
S3HV/SL(H) and on S3H ( /sy uc, for which the map c is equivariant.

Let G C GL(H¢) be the semi-direct product of SL (H¢) and Z,,
generated by Ao and SL(Hc). The invariant ring C[V] G has an important
topological interpretation: it consists of all polynomial invariants of complex

cohomology rings of 1-connected, closed, oriented 6-dimensional manifolds
with torsion-free homology.

EXAMPLE 5. Binary cubics (b = 2)

Choose linear coordinates X, Y on Hc, and write a cubic polynomial
S e C[X, Y]sin the form f = aoX? + 3a, X2Y + 3a,XY? + a;Y3.

We use ay, a1, ay, as as coordinates on S3HY, so that C[S3H (]
= Clao, ai, a;, a;]. The discriminant A(f) of f is a homogeneous
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