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Proof. Wo is characteristic for F if and only if qp= Ft{W0).

In terms of a Z-basis {ex,...,eb} for H the condition qpelmiF1)
translates into a simple rank condition over Z/2: the Z/2-rank of the
b x 2 )-matrix A representing Ft must be equal to the Z/2-rank of
the matrix A extended by the column (et • ë} • (e, + e))) \^i^j^b

Example 3. Let H Zex © Ze2 be free of rank 2, F e S3HW given
by e\ - a, e\e% b, ex e\ c, e\ - d with a, b,c, d e Z. The rank condition
becomes

' ä b' 'ä b 0 '

rk2 c d rk2 cd Ö

^ L. f
b c b + c

t

2.2 Homotopy types with a given cohomology ring

Our next task is to describe the set of oriented homotopy types of
1-connected, closed, oriented, 6-dimensional manifolds with a fixed torsion-
free cohomology ring.

From Zubr's classification theorem we know that in algebraic terms this

means the following: fix a non-negative integer r0, a finitely generated free

abelian group H0, and a symmetric trilinear form F0 e S3HV0 which admits

characteristic elements.

Let H0, Fö) be the set of 1-connected, closed, oriented,
6-dimensional manifolds X with Z?3 (X) 2r0, such that there exists an

isomorphism a:H0^H2(X,Z) with a*Fx Fo. Denote by Aut(F0) the

subgroup of Z-automorphisms of H0 which leave F0 g S3Ho invariant;
Aut(F0) acts on pairs (w, [/]) e H0 x Ho/uFo in a natural way:

y(w, [/]):=

Let Aut(F0)\L/o x Hv0/4Shi/uFo be the set of Aut(Fc)-orbits.
A manifold X in .J/ (r0 ,H0,F0) and an isomorphism a: HQ H2 (X, Z)

with a*Fx Fo yields a well-defined Aut(F0)-orbit:

(a ~1 (w2(X))i a* [p\{X) + 24F]) (modulo Aut(F0))

where T e H4(X,Z) is an arbitrary integral lifting of t(X) e H4(X, Z/2).
The set of oriented homotopy types .Jl(r0, H0i F0)/m of manifolds in

.y//(r0,Ho,F0) can now be described in the following way:
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Proposition 3. The assignment (a -1 (w2(X)), a* [p\(X) + 247])
(modulo Aut (F0)J defines an injection.

I: XI(rQ, H0 ,F0)/~ Aut(F0)\#o X Hi/\%hwq /Cro •

Proof. Suppose A and X' are manifolds in ,.// (r0, H0,F0),
a : Ho H2(X, Z) and a' :H0^ H2(X\ Z) isomorphisms with a*FX F0

and (a')*FX> F0. X and X' have the same image under / iff there exists

an automorphism y e Aut(70) with ya~l(w2(X)) (a') ~1 w2(Xr) and

(y-!)*a*[pdX) + 247] (a'^lpfX') + 247']. Consider ß := a o y
o a " 1

: H2(X, Z) -> H2(X \ Z) ; ß is obviously an isomorphism with ß* Fx>

Fx,$w2(X) w2(X')i and ß* [Pl (X') + 247'] [Pl (X) + 247] ; but
this means that the systems of invariants associated with X and X' are weakly
equivalent, and therefore X and X' oriented homotopy equivalent.

A complete description of the set X/{r0, H0, F0)/= i.e. of the image

of I is only possible if the automorphism group Aut(70) is known; this can
be a serious problem, but we will see that the 'general' automorphism group
is finite (and usually small), so that the next proposition gives a reasonable

estimate for the number of elements in XI(r0, H0,70)/=

Proposition 4. Fix r0 e N, a finitely generated free abelian

group Ho, and a symmetric trilinear form F0 e S3HV0 which admits
characteristic elements. Set b : rkzH0, s : rkï/2 (7o), and let

t: rkz/2('F0) be the Z/2-rank of the Z/2-linear square map • po : H0
Hi sending ü e H0 to ü2 e Hi. Then X/ (r0,Ho,F0)/=

contains at most 2lb~s~t elements.

Proof. Fix any admissible system of invariants (r0, HQ, w0, x0, F0, p0)
for a manifold in XI(r0, H0, F0). Given (r0, Hö, F0), we know from the last
lemma that the possible elements w0 form a coset of Ker(7o) in H0, so that
there exist precisely 2b~s such elements. It remains to count the classes

[/] e HI/48HI/Ufo, such that the Aut(70)-orbit of (w0,[Po + 2470 + /])
lies in the image of I.

To understand the latter condition we fix integral liftings W0, e H0)T0
e HI of Wo and t0 satisfying the admissibility conditions

i) wl(p0 + 24 To) (Wo)(mod48)

ii) p0 (x) 4x3+ 6x2 Wo + 3xW\(mod24) VxeH0.
Clearly the Aut(^o)-orbit of (w0,[p0+ 24 /]) lies in the image of /

if and only if
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i') W\(p0 + 24T0 + /) (W0)(mod48),

ii') (po+ /) (x)4a3 + 6x2Wo+ 3x W20(mod 24) VxeH0,
which is equivalent to l(W0) 0(mod48), and / 0(mod24i/o) because

of i) and ii).
Now, by definition of the subgroup UFo C we have the

following commutative diagram with exact rows and columns:

Ker(-/f) 0

I I
0 -* Ker(24 po) ^ H0/2ho ^ UFo - 0

p 1 1
ro

0 Ho/2ffl Q

I 1 II

0 - Coker(-^o) - i/o Ashvq/uFo Hy0 /2ahv0 Q

1 I
0 0

The number of elements \l] e Hv0/4SHi/uFo to be counted coincides

therefore with the cardinality of the kernel of the map eu(w0) : Coker(-jpo)
* Z/2 induced by evaluation in w0. This number is at most 2b~t(2b~t~l

if Wo ^ 0 and t =f= b).

Corollary 2. If the Z/2-rank s rkZ/2('F0) is maximal\ then

Jé (r0, Ho ,F0)/= contains at most one class.

Proof. Suppose -Fo : H0 Ho is surjective; then Fo : H0 S2HV0

must have a trivial kernel, since hx2 0 for all x e H0 implies h 0

if every linear form is a square. But this means s t b, so that

^(r0,Ho,Fo)/= has at most one element.

Example 4. Let H0 Zet © Ze2, e\ a, e\e2 b, exe\ c, e\ d.

If b c(mod 2), and äd - be l(mod2), then ^#(r0, ü0, F0)/= contains

precisely one class for every ^ 0.
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