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Proof. W, is characteristic for F if and only if g7 = F1(Wy).

In terms of a Z-basis {e,...,e,} for H the condition gze Im(ﬁf)
translates into a simple rank condition over Z,,: the Z,,-rank of the
b x (bzl)-matrix A representing F! must be equal to the Z,,-rank of
the matrix 4 extended by the column (e; - €, (€;+ €,)) 1<i< <

EXAMPLE 3. Let H =7Ze, @ Ze, be free of rank 2, Fe S?H"Y given
by e} = a, ele, = b, ejel = c, el = d with a, b, ¢, d € Z. The rank condition
becomes

@b ib o
rk, c:d = rk, cfd 0
b ¢ b ¢ b+c

2.2 HOMOTOPY TYPES WITH A GIVEN COHOMOLOGY RING

Our next task is to describe the set of oriented homotopy types of
1-connected, closed, oriented, 6-dimensional manifolds with a fixed torsion-
free cohomology ring.

From Zubr’s classification theorem we know that in algebraic terms this
means the following: fix a non-negative integer 7o, a finitely generated free
abelian group H,, and a symmetric trilinear form Fo, € S3H'$ which admits
characteristic elements.

Let #(ro,Ho,Fo) be the set of Il-connected, closed, oriented,
6-dimensional manifolds X with b;(X) = 2r., such that there exists an iso-
morphism a:Ho, — H?*(X,Z) with a*Fy = F,. Denote by Aut(F,) the
subgroup of Z-automorphisms of H, which leave F, € S?H Y invariant;
Aut(F,) acts on pairs (w, [[]) € Ho X H% /sy /u,, in a natural way:

v, [11) := (v(w), (v =D)*[1]) .

Let awery)\Ho X H%/say/us, be the set of Aut(F,)-orbits.
A manifold X'in .# (ro, Ho, Fo) and an isomorphism a: H, = H?(X, Z)
with a*Fy = F, yields a well-defined Aut(F,)-orbit:

(0~ '(wy (X)), a*[p,(X) + 24T]) (modulo Aut(Fy)) ,

where 7 € H*(X,Z) is an arbitrary integral lifting of ©(X) € H*(X, Z,,).
The set of oriented homotopy types .# (ro, Ho, Fo)/~ of manifolds in
M (ro,Ho, Fo) can now be described in the following way:
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PROPOSITION 3. The assignment X — (0.~ (w5 (X)), 0* [p1(X) + 24T])
(modulo Aut(F,)) defines an injection.

I: J//(ro,Ho,Fo)/z —)Aut(FO)\HO X H\é/48H\6/UFO°

Proof. Suppose X and X' are manifolds in #(ro,Ho, Fo),
a:Ho > H?(X,Z) and o': Ho = H*(X', Z) isomorphisms with a*Fy = Fo
and (a')*Fyx. = Fo. X and X’ have the same image under [ iff there exists
an automorphism v € Aut(Fo) with ya ~!(wy(X)) = (a’) ~'w,(X’) and
(y " D*a*[py(X)+24T] = (0.)*[p1(X) +24T’']. Consider P:=a oy
oo~':H*X,Z)~ H*(X',Z); B is obviously an isomorphism with B* Fy.
= Fx,Bwa(X) = wo(X"), and B*[p(X') +24T’] = [p1(X) +24T]; but
this means that the systems of invariants associated with X and X’ are weakly
equivalent, and therefore X and X’ oriented homotopy equivalent.

A complete description of the set .#(ro, Ho, Fo)/~ 1.e. of the image
of I is only possible if the automorphism group Aut(Fs) is known; this can
be a serious problem, but we will see that the ‘general’ automorphism group
is finite (and usually small), so that the next proposition gives a reasonable
estimate for the number of elements in .# (ro, Ho, Fo)/~.

PROPOSITION 4. Fix ro € N, a finitely generated free abelian
group Ho, and a symmetric trilinear form F., e S’HY{ which admits
characteristic elements. Set b:=rk;Ho, s:= rkz/z(ﬁ &) and let
t:=rkgz,n("F) be the Z,,-rank of the Z,,-linear square map -fozf_lo
—~ HY% sending ueH, to u*eHY. Then M (ro,Ho,Fo)/~ con-
tains at most 22°-s-1 elements.

Proof. Fix any admissible system of invariants (ro, Ho, Wo, To, Fo, Do)
for a manifold in .# (ro, Ho, Fo). Given (ro, Ho, Fo), we know from the last
lemma that the possible elements w, form a coset of Ker (F ) in Ho, so that
there exist precisely 22-¢ such elements. It remains to count the classes
[/] € H5 /sy /v, » such that the Aut(Fo)-orbit of (wo,[po + 24T + 1])
lies in the image of 1.

To understand the latter condition we fix integral liftings Wo, € Ho, To
e H{ of wo and 71, satisfying the admissibility conditions

) W= (po+24Ts) (W) (mod 48)
i) po(x)=4x3+ 6x2Wo + 3xWh(mod24) Vx e H,.

Clearly the Aut(Fs)-orbit of (wo, [po + 24T, + []) lies in the image of I
if and only if
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1) W3 =(po+24Ts + 1) (Wo) (mod 48),
i) (po+1)(x) =4x3+ 6x2W, + 3xW3(mod24) Vx € Ho,

which is equivalent to /(W,) = 0(mod 48), and / = 0(mod 24 H%) because
of 1) and ii).

Now, by definition of the subgroup Ur, C HY/siyy we have the
following commutative diagram with exact rows and columns:

Ker(-£.) 0
| !
0-Ker@4 7)) © Holoy,  2° Ur. - 0
a !
0 — /28y = o/ asry - H$/umy— 0
l ! |
0 — Coker(‘r) — Hb/wmy/v,, — Hb/umy—0
l |
0 0

The number of elements [/] € Ho/smy/u,, to be counted coincides
therefore with the cardinality of the kernel of the map ev(wo): Coker(-7,)
— Z,, induced by evaluation in w.. This number is at most 22-7(2¢-/-1
if wo # 0 and ¢ # b).

COROLLARY 2. If the Z,,-rank s =rky,,(‘5) is maximal, then
M(ro, Ho, Fo)/~ contains at most one class.

Proof. Suppose 'ﬁoif—{o—’lrl\é is surjective; then F4:Ho— S2HY,
must have a trivial kernel, since Ax% = 0 for all x € Ho implies 4 = 0
if every linear form is a square. But this means s =1¢= b, so that
M (ro,Ho,Fo)/~ has at most one element.

EXAMPLE 4. Let Ho = Ze; @ Ze,, €] = a, eje; = b, eje; = ¢, e; = d.
If b = c(mod 2), and ad — bc = 1(mod 2), then .# (70, Ho, Fo)/~ contains
precisely one class for every ro, > 0.
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