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where the ‘degree’ d corresponds to the cubic form. Such a 4-tuple is
admissible iff dQx + W)3=(p +24T) - 2x + W) (mod 48)_holds for every
integer x. This is equivalent to p = 4d (_mod 24) if W=0, and to
p =d + 24T (mod 48) with d = 0(mod 2) if W # 0.

Two admissible 4-tuples (W, T, d, p) and (W', T',d’, p') are equivalent
iff W' =W, T'=T and (d’,p’) = +(d,p). Taking the degree d non-
negative, we find:

PROPOSITION 1. There is a 1I-1 correspondence between orient_ed _homeo-
morphism types of cores X, with b,(Xy) =1, and 4-tuples (W, T,d,p),
normalized so that d >0, and p=>=0 if d=0, which satisfy
p=4dmod24) if W=0, and d=0(@mod2),p=d + 24T (mod48)
if W%0.

In order to classify the associated homotopy types we first have to deter-
mine the subgroup Upr associated to a given cubic form F. By definition we
find Up=0 if d =0(mod2), Ur=2Z,, if d = 1(mod 2). Two normalized
4-tuples (W, T, d,p) and (I/_V’, T, d’,p’) are weakly -equivalent iff
d =d, W' =W, and p+ 24T =p’ +24T'(mod48) if d = 0(mod?2),
p = p’'(mod 24) if d = 1 (mod 2).

Putting everything together, we find a single oriented homotopy type for
every odd degree d > 0, which is necessarily spin, and 3 oriented homotopy
types for every even degree d > 0; one of these 3 types has W # 0, the
other two are spin, and they are distinguished by p + 24 T(mod 48)
i.e. p = 4d(mod 48), or p = 4d + 24 (mod 48).

2. REALIZATION OF CUBIC FORMS

In the previous section the (homotopy) topological classification of
1-connected, closed, oriented, 6-dimensional manifolds with torsion-free
homology has been transformed into an arithmetical moduli problem: to
describe the sets of (weak) equivalence classes of admissible systems of
invariants. In this section we begin to investigate the latter problem; we give
a simple criterion for the realizability of cubic forms by smooth manifolds,

and we describe, at least in principle, the classification of homotopy types of
manifolds with a given cohomology ring.
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2.1 COHOMOLOGY RINGS OF 6-MANIFOLDS

Let (r, H,w, 7, F,p) be a system of invariants as in section 1; recall
tpat it is admissible iff for every We H, T € HY with W = w(mod 2),
T = t(mod 2) the following congruence holds:

(*) W3=(p+24T) (W) (mod 48) .

LEMMA 1. (r, H, w,r,F, p) is admissible if and only if there exist
WoeH, To e HY with W, = w(mod?2), To = t(mod?2), such that

i) Wb=(p+24To) (Wo) (mod 48)
i) p(x)=4x3+ 6x2Wo + 3xW5(mod24) Vx e H.

Proof. Obvious since the set of integral lifts of w is a coset W, + 2H.

DEFINITION 3. Let F e S3HY be a symmetric trilinear form on a
finitely generated free abelian group H. An element W e H is
characteristic for F iff

(%) Xy (x+y+W)=0(mod2) Vx,ye H.

LEMMA 2. W e H is a characteristic element for F e S*HY if and
only if the function ly:H—Z, [y (x):=4x3 + 6x2W + 3xW?2 s linear
in x modulo 24.

Proof. ly(x+y)=Ilp(x)+1Ip(y)+12(x%2y + xy> + xy W), whence the
assertion.

The existence of characteristic elements is a necessary and sufficient
condition for a cubic form F € S3HVY to be realizable by a manifold. In fact,
we have:

PROPOSITION 2. A given cubic form F € S3HY on a finitely generated
free abelian group H is realizable as cup-form of a I-connected, closed,
oriented, 6-dimensional manifold with torsion-free homology if and only if it
possesses a characteristic element.

Proof. 1If (r,H,w,t,F,p) is an admissible system of invariants,
and W, € H any integral lift of w, then we have p(x) = 4x3 + 6x2 W,
+ 3x W5(mod 24) Vx € H, i.e. the function lw,: H— Zis linear modulo 24,
and W, is therefore characteristic for F. Conversely, suppose W, € H is a
characteristic element for a cubic form F e S3HV; let w:= Wo(mod 2),
r:=0.
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By the main lemma we have to construct linear forms p, T € HY,
such that

) Wi=(p+24T) (Wo) (mod 43)
i) p(x) =4x3 + 6x2Wo + 3xWo(mod24) Vx € H.

The function Iy :H —Z, 1y (x) =4x3 + 6x>Wo + 3xW?o is linear
modulo 24 since W, is a characteristic element for F': we therefore choose
a linear form po, € HY with po(x) = Iy, (x) (mod 24) Vx € H. Substituting
x = Wo we find po(Wo) = 13 W (mod 24); but since W, is characteristic
we have W3 =0(mod2), thus po(W,) = W3 (mod 24). Write po(Wo)
= W3 + 24k for some k € Z.

case 1) k = 0(mod2): define p:= pg, T:= 0.

case 2) k= 1(mod2): we must find a linear form 7o, € HY with
To(Ws) = 1(mod?2); clearly this can be done if and only if W, is not
divisible by 2. If W, were divisible by 2, W, =2V, for some V, € H,
then 2po (Vo) = po(Wo) = Wi + 24k = 8V + 24k would give po(Vo)
=4V + 12k; then, using po (Vo) =4V + 6V Wo +3Ve Wo =4V73 (mod24)
we would find k£ = 0(mod 2), which is not the case by assumption.

This shows that Fe S?HY is realizable by a topological manifold
with Pontrjagin class po and non-vanishing triangulation obstruction
To:= To (mod 2). In order to realize F by a smooth manifold, one can
take p:= po + 2475, and 1:= 0.

REMARK 3. The topological counterpart of the existence of a charac-
teristic element for a given cubic form F € S3HV is the existence of a mod-2
Steenrod-algebra structure, which is a necessary condition for a ring to be a
cohomology ring.

The existence and the classification of characteristic elements for a given
cubic form is essentially a linear algebra problem over Z,,. To see this,
let F e S3HY be a fixed cubic form on a finitely generated free abelian
group H. Associated with F we have a linear map F’: H — S2H" sending
an element 4 € H to the bilinear form F'(h): H® H—>Z,(x,y) > x -y - h.
Let H:= H/»y. F e S3H" be the reductions of H and F modulo 2, and
let — : H— H be the natural epimorphism. The symmetric trilinear form F
on the Z,,-module H defines a natural symmetric bilinear form g7e S2H"
given by gr(x,y):=x-y - (x +y).

LEMMA 3. Fe S 3[_1 v admits characteristic elements if and only if qF
lies in the image of F'e Homgz(H,S*>H). The set of all characteristic
elements for F is a coset of the form W, + Ker (ﬁ’ D).
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Proof. W, is characteristic for F if and only if g7 = F1(Wy).

In terms of a Z-basis {e,...,e,} for H the condition gze Im(ﬁf)
translates into a simple rank condition over Z,,: the Z,,-rank of the
b x (bzl)-matrix A representing F! must be equal to the Z,,-rank of
the matrix 4 extended by the column (e; - €, (€;+ €,)) 1<i< <

EXAMPLE 3. Let H =7Ze, @ Ze, be free of rank 2, Fe S?H"Y given
by e} = a, ele, = b, ejel = c, el = d with a, b, ¢, d € Z. The rank condition
becomes

@b ib o
rk, c:d = rk, cfd 0
b ¢ b ¢ b+c

2.2 HOMOTOPY TYPES WITH A GIVEN COHOMOLOGY RING

Our next task is to describe the set of oriented homotopy types of
1-connected, closed, oriented, 6-dimensional manifolds with a fixed torsion-
free cohomology ring.

From Zubr’s classification theorem we know that in algebraic terms this
means the following: fix a non-negative integer 7o, a finitely generated free
abelian group H,, and a symmetric trilinear form Fo, € S3H'$ which admits
characteristic elements.

Let #(ro,Ho,Fo) be the set of Il-connected, closed, oriented,
6-dimensional manifolds X with b;(X) = 2r., such that there exists an iso-
morphism a:Ho, — H?*(X,Z) with a*Fy = F,. Denote by Aut(F,) the
subgroup of Z-automorphisms of H, which leave F, € S?H Y invariant;
Aut(F,) acts on pairs (w, [[]) € Ho X H% /sy /u,, in a natural way:

v, [11) := (v(w), (v =D)*[1]) .

Let awery)\Ho X H%/say/us, be the set of Aut(F,)-orbits.
A manifold X'in .# (ro, Ho, Fo) and an isomorphism a: H, = H?(X, Z)
with a*Fy = F, yields a well-defined Aut(F,)-orbit:

(0~ '(wy (X)), a*[p,(X) + 24T]) (modulo Aut(Fy)) ,

where 7 € H*(X,Z) is an arbitrary integral lifting of ©(X) € H*(X, Z,,).
The set of oriented homotopy types .# (ro, Ho, Fo)/~ of manifolds in
M (ro,Ho, Fo) can now be described in the following way:
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PROPOSITION 3. The assignment X — (0.~ (w5 (X)), 0* [p1(X) + 24T])
(modulo Aut(F,)) defines an injection.

I: J//(ro,Ho,Fo)/z —)Aut(FO)\HO X H\é/48H\6/UFO°

Proof. Suppose X and X' are manifolds in #(ro,Ho, Fo),
a:Ho > H?(X,Z) and o': Ho = H*(X', Z) isomorphisms with a*Fy = Fo
and (a')*Fyx. = Fo. X and X’ have the same image under [ iff there exists
an automorphism v € Aut(Fo) with ya ~!(wy(X)) = (a’) ~'w,(X’) and
(y " D*a*[py(X)+24T] = (0.)*[p1(X) +24T’']. Consider P:=a oy
oo~':H*X,Z)~ H*(X',Z); B is obviously an isomorphism with B* Fy.
= Fx,Bwa(X) = wo(X"), and B*[p(X') +24T’] = [p1(X) +24T]; but
this means that the systems of invariants associated with X and X’ are weakly
equivalent, and therefore X and X’ oriented homotopy equivalent.

A complete description of the set .#(ro, Ho, Fo)/~ 1.e. of the image
of I is only possible if the automorphism group Aut(Fs) is known; this can
be a serious problem, but we will see that the ‘general’ automorphism group
is finite (and usually small), so that the next proposition gives a reasonable
estimate for the number of elements in .# (ro, Ho, Fo)/~.

PROPOSITION 4. Fix ro € N, a finitely generated free abelian
group Ho, and a symmetric trilinear form F., e S’HY{ which admits
characteristic elements. Set b:=rk;Ho, s:= rkz/z(ﬁ &) and let
t:=rkgz,n("F) be the Z,,-rank of the Z,,-linear square map -fozf_lo
—~ HY% sending ueH, to u*eHY. Then M (ro,Ho,Fo)/~ con-
tains at most 22°-s-1 elements.

Proof. Fix any admissible system of invariants (ro, Ho, Wo, To, Fo, Do)
for a manifold in .# (ro, Ho, Fo). Given (ro, Ho, Fo), we know from the last
lemma that the possible elements w, form a coset of Ker (F ) in Ho, so that
there exist precisely 22-¢ such elements. It remains to count the classes
[/] € H5 /sy /v, » such that the Aut(Fo)-orbit of (wo,[po + 24T + 1])
lies in the image of 1.

To understand the latter condition we fix integral liftings Wo, € Ho, To
e H{ of wo and 71, satisfying the admissibility conditions

) W= (po+24Ts) (W) (mod 48)
i) po(x)=4x3+ 6x2Wo + 3xWh(mod24) Vx e H,.

Clearly the Aut(Fs)-orbit of (wo, [po + 24T, + []) lies in the image of I
if and only if
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1) W3 =(po+24Ts + 1) (Wo) (mod 48),
i) (po+1)(x) =4x3+ 6x2W, + 3xW3(mod24) Vx € Ho,

which is equivalent to /(W,) = 0(mod 48), and / = 0(mod 24 H%) because
of 1) and ii).

Now, by definition of the subgroup Ur, C HY/siyy we have the
following commutative diagram with exact rows and columns:

Ker(-£.) 0
| !
0-Ker@4 7)) © Holoy,  2° Ur. - 0
a !
0 — /28y = o/ asry - H$/umy— 0
l ! |
0 — Coker(‘r) — Hb/wmy/v,, — Hb/umy—0
l |
0 0

The number of elements [/] € Ho/smy/u,, to be counted coincides
therefore with the cardinality of the kernel of the map ev(wo): Coker(-7,)
— Z,, induced by evaluation in w.. This number is at most 22-7(2¢-/-1
if wo # 0 and ¢ # b).

COROLLARY 2. If the Z,,-rank s =rky,,(‘5) is maximal, then
M(ro, Ho, Fo)/~ contains at most one class.

Proof. Suppose 'ﬁoif—{o—’lrl\é is surjective; then F4:Ho— S2HY,
must have a trivial kernel, since Ax% = 0 for all x € Ho implies 4 = 0
if every linear form is a square. But this means s =1¢= b, so that
M (ro,Ho,Fo)/~ has at most one element.

EXAMPLE 4. Let Ho = Ze; @ Ze,, €] = a, eje; = b, eje; = ¢, e; = d.
If b = c(mod 2), and ad — bc = 1(mod 2), then .# (70, Ho, Fo)/~ contains
precisely one class for every ro, > 0.

it
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