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where the 'degree' d corresponds to the cubic form. Such a 4-tuple is

admissible iff d(2x + W)3 (p + 247) • (2x + W) (mod 48)_holds for every

integer a. This is equivalent to p Ad (mod 24) if W 0, and to

p d + 24r(mod48) with d 0(mod2) if W ± 0.

Two admissible 4-tuples (W, T,d,p) and {W% f',d\pr) are equivalent

iff w' W,T' T and (d\p') ±(d,p). Taking the degree d non-

negative, we find:

Proposition 1. There is a 1-1 correspondence between oriented homeo-

morphism types of cores X0 with b2(X0) 1, and 4-tuples (W,T,d,p),
normalized so that d ^ 0, and p ^ 0 if d 0, which satisfy

p 4r/(mod24) if W 0, and d 0(mod2), p d + 24T(mod48)

if W± 0.

In order to classify the associated homotopy types we first have to determine

the subgroup UF associated to a given cubic form F. By definition we

find UF 0 if d 0(mod2), UF Z/2 if d l(mod2). Two normalized

4-tuples (W,T,d,p) and (Wr, f', d\p') are weakly equivalent iff
d' d, W' ÏV, and p + 247 s p' + 24rx(mod 48) if d 0(mod2),
p p'(mod 24) if d l(mod2).

Putting everything together, we find a single oriented homotopy type for
every odd degree d ^ 0, which is necessarily spin, and 3 oriented homotopy
types for every even degree d ^ 0; one of these 3 types has W F 0, the
other two are spin, and they are distinguished by p + 24T(mod48)
i.e. p 4<i(mod48), or p 4d + 24(mod 48).

2. Realization of cubic forms

In the previous section the (homotopy) topological classification of
1-connected, closed, oriented, 6-dimensional manifolds with torsion-free
homology has been transformed into an arithmetical moduli problem: to
describe the sets of (weak) equivalence classes of admissible systems of
invariants. In this section we begin to investigate the latter problem; we give
a simple criterion for the realizability of cubic forms by smooth manifolds,
and we describe, at least in principle, the classification of homotopy types of
manifolds with a given cohomology ring.
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2.1 COHOMOLOGY RINGS OF 6-MANIFOLDS

Let (r, H, wf t, F, p) be a system of invariants as in section 1; recall
that it is admissible iff for every W e H, T e Hv with W w(mod2),
T u(mod2) the following congruence holds:

(*) W3 (p + 24T) (W) (mod48)

Lemma 1. (r, H, w, t, F,p) is admissible if and only if there exist
W0 e H, To e FF with W0 w(mod 2), T0 T(mod2), such that

i) W\ (p+ 24 To)(Wo)(mod48)

ii) p(x) 4x3 + 6x2 Wo + 3x Wl (mod 24) Vx e H.

Proof. Obvious since the set of integral lifts of w is a coset W0 + 2H.

Definition 3. Let FeS3Hv be a symmetric trilinear form on a

finitely generated free abelian group H. An element W e H is

characteristic for F iff
(**) x • y - (x + y + W) 0 (mod 2) Vx, y e H

Lemma 2. W e H is a characteristic element for F e 53 Hv if and
only if the function lw: H --* Z, /^(x) : 4x3 + 6x2 W + 3x W2 is linear
in x modulo 24.

Proof. lw(x + y) lw(x) + lw{y) + 12(x2y + xy2 + xyW), whence the

assertion.

The existence of characteristic elements is a necessary and sufficient
condition for a cubic form F e S3HV to be realizable by a manifold. In fact,
we have:

Proposition 2. A given cubic form F e S3HV on a finitely generated

free abelian group H is realizable as cup-form of a 1-connected, closed,

oriented, 6-dimensional manifold with torsion-free homology if and only if it
possesses a characteristic element.

Proof. If {r,H,w,x,F,p) is an admissible system of invariants,
and Wo e H any integral lift of w, then we have p(x) 4x3 + 6x2Wö
+ 3x WI (mod 24) Vx e H, i.e. the function lWo:H-+ Z is linear modulo 24,

and Wo is therefore characteristic for F. Conversely, suppose W0 e H is a

characteristic element for a cubic form F e S3HV; let w : JT0(mod2),

r: 0.
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By the main lemma we have to construct linear forms p,T e Hv,
such that

i) wi (p + 24T) (Wo) (mod 48)

ii) p(x) 4x3 + 6x2W0 + 3xWl (mod 24) Vx e H.

The function lWo:H-+ Z, 1Wq (a) 4x3 + 6x2 WQ + 3x W\ is linear

modulo 24 since W0 is a characteristic element for F: we therefore choose

a linear form pQ e Hy with p0(x) /^(x) (mod 24) Vx e H. Substituting

x Wo we find p0{Wo) 13 IF 3C (mod 24); but since WQ is characteristic

we have W30 0(mod2), thus p0(W0) W30(mod24). Write p0(W0)
W30 + 24& for some k e Z.

case 1) k 0(mod 2): define p : Po, T: 0.

case 2) k= l(mod2): we must find a linear form Tö e Ffv with
T0 (Wo) l(mod2); clearly this can be done if and only if W0 is not
divisible by 2. If W0 were divisible by 2, W0 2 Vö for some V0 e H,
then 2po{V0) p0(W0) WI + 24k 8 V\ + 24A: would give ^0(K0)

4 Vl + 12k\ then, using pQ (VQ) 4Vl + 6 Vl W0 + 3V0 W\ 4 V30 (mod24)
we would find k 0(mod2), which is not the case by assumption.

This shows that F e S3HV is realizable by a topological manifold
with Pontrjagin class p0 and non-vanishing triangulation obstruction

To := T0 (mod 2). In order to realize F by a smooth manifold, one can
take p : pQ + 24 T0, and t : 0.

Remark 3. The topological counterpart of the existence of a characteristic

element for a given cubic form F e S3HV is the existence of a mod-2
Steenrod-algebra structure, which is a necessary condition for a ring to be a

cohomology ring.

The existence and the classification of characteristic elements for a given
cubic form is essentially a linear algebra problem over Z/2. To see this,
let Fe 53/fv be a fixed cubic form on a finitely generated free abelian

group //. Associated with F we have a linear map F{:H -> S2i/V sending
an element h e H to the bilinear form F' (A) : H g) H -> Z, (x, y) -> x • y • h.
Let //: L//2//. F e S3//v be the reductions of H and F modulo 2, and
let -://-> H be the natural epimorphism. The symmetric trilinear form F
on the Z/2-module H defines a natural symmetric bilinear form q^e S2H"/
given by qp(x, y) : x • y • (x + y).

Lemma 3. Fe S3Hy admits characteristic elements if and only if qp
lies in the image of F* e Homz(H, S2HV). The set of all characteristic
elements for F is a coset of the form WQ + Ker(F').
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Proof. Wo is characteristic for F if and only if qp= Ft{W0).

In terms of a Z-basis {ex,...,eb} for H the condition qpelmiF1)
translates into a simple rank condition over Z/2: the Z/2-rank of the
b x 2 )-matrix A representing Ft must be equal to the Z/2-rank of
the matrix A extended by the column (et • ë} • (e, + e))) \^i^j^b

Example 3. Let H Zex © Ze2 be free of rank 2, F e S3HW given
by e\ - a, e\e% b, ex e\ c, e\ - d with a, b,c, d e Z. The rank condition
becomes

' ä b' 'ä b 0 '

rk2 c d rk2 cd Ö

^ L. f
b c b + c

t

2.2 Homotopy types with a given cohomology ring

Our next task is to describe the set of oriented homotopy types of
1-connected, closed, oriented, 6-dimensional manifolds with a fixed torsion-
free cohomology ring.

From Zubr's classification theorem we know that in algebraic terms this

means the following: fix a non-negative integer r0, a finitely generated free

abelian group H0, and a symmetric trilinear form F0 e S3HV0 which admits

characteristic elements.

Let H0, Fö) be the set of 1-connected, closed, oriented,
6-dimensional manifolds X with Z?3 (X) 2r0, such that there exists an

isomorphism a:H0^H2(X,Z) with a*Fx Fo. Denote by Aut(F0) the

subgroup of Z-automorphisms of H0 which leave F0 g S3Ho invariant;
Aut(F0) acts on pairs (w, [/]) e H0 x Ho/uFo in a natural way:

y(w, [/]):=

Let Aut(F0)\L/o x Hv0/4Shi/uFo be the set of Aut(Fc)-orbits.
A manifold X in .J/ (r0 ,H0,F0) and an isomorphism a: HQ H2 (X, Z)

with a*Fx Fo yields a well-defined Aut(F0)-orbit:

(a ~1 (w2(X))i a* [p\{X) + 24F]) (modulo Aut(F0))

where T e H4(X,Z) is an arbitrary integral lifting of t(X) e H4(X, Z/2).
The set of oriented homotopy types .Jl(r0, H0i F0)/m of manifolds in

.y//(r0,Ho,F0) can now be described in the following way:
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Proposition 3. The assignment (a -1 (w2(X)), a* [p\(X) + 247])
(modulo Aut (F0)J defines an injection.

I: XI(rQ, H0 ,F0)/~ Aut(F0)\#o X Hi/\%hwq /Cro •

Proof. Suppose A and X' are manifolds in ,.// (r0, H0,F0),
a : Ho H2(X, Z) and a' :H0^ H2(X\ Z) isomorphisms with a*FX F0

and (a')*FX> F0. X and X' have the same image under / iff there exists

an automorphism y e Aut(70) with ya~l(w2(X)) (a') ~1 w2(Xr) and

(y-!)*a*[pdX) + 247] (a'^lpfX') + 247']. Consider ß := a o y
o a " 1

: H2(X, Z) -> H2(X \ Z) ; ß is obviously an isomorphism with ß* Fx>

Fx,$w2(X) w2(X')i and ß* [Pl (X') + 247'] [Pl (X) + 247] ; but
this means that the systems of invariants associated with X and X' are weakly
equivalent, and therefore X and X' oriented homotopy equivalent.

A complete description of the set X/{r0, H0, F0)/= i.e. of the image

of I is only possible if the automorphism group Aut(70) is known; this can
be a serious problem, but we will see that the 'general' automorphism group
is finite (and usually small), so that the next proposition gives a reasonable

estimate for the number of elements in XI(r0, H0,70)/=

Proposition 4. Fix r0 e N, a finitely generated free abelian

group Ho, and a symmetric trilinear form F0 e S3HV0 which admits
characteristic elements. Set b : rkzH0, s : rkï/2 (7o), and let

t: rkz/2('F0) be the Z/2-rank of the Z/2-linear square map • po : H0
Hi sending ü e H0 to ü2 e Hi. Then X/ (r0,Ho,F0)/=

contains at most 2lb~s~t elements.

Proof. Fix any admissible system of invariants (r0, HQ, w0, x0, F0, p0)
for a manifold in XI(r0, H0, F0). Given (r0, Hö, F0), we know from the last
lemma that the possible elements w0 form a coset of Ker(7o) in H0, so that
there exist precisely 2b~s such elements. It remains to count the classes

[/] e HI/48HI/Ufo, such that the Aut(70)-orbit of (w0,[Po + 2470 + /])
lies in the image of I.

To understand the latter condition we fix integral liftings W0, e H0)T0
e HI of Wo and t0 satisfying the admissibility conditions

i) wl(p0 + 24 To) (Wo)(mod48)

ii) p0 (x) 4x3+ 6x2 Wo + 3xW\(mod24) VxeH0.
Clearly the Aut(^o)-orbit of (w0,[p0+ 24 /]) lies in the image of /

if and only if
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i') W\(p0 + 24T0 + /) (W0)(mod48),

ii') (po+ /) (x)4a3 + 6x2Wo+ 3x W20(mod 24) VxeH0,
which is equivalent to l(W0) 0(mod48), and / 0(mod24i/o) because

of i) and ii).
Now, by definition of the subgroup UFo C we have the

following commutative diagram with exact rows and columns:

Ker(-/f) 0

I I
0 -* Ker(24 po) ^ H0/2ho ^ UFo - 0

p 1 1
ro

0 Ho/2ffl Q

I 1 II

0 - Coker(-^o) - i/o Ashvq/uFo Hy0 /2ahv0 Q

1 I
0 0

The number of elements \l] e Hv0/4SHi/uFo to be counted coincides

therefore with the cardinality of the kernel of the map eu(w0) : Coker(-jpo)
* Z/2 induced by evaluation in w0. This number is at most 2b~t(2b~t~l

if Wo ^ 0 and t =f= b).

Corollary 2. If the Z/2-rank s rkZ/2('F0) is maximal\ then

Jé (r0, Ho ,F0)/= contains at most one class.

Proof. Suppose -Fo : H0 Ho is surjective; then Fo : H0 S2HV0

must have a trivial kernel, since hx2 0 for all x e H0 implies h 0

if every linear form is a square. But this means s t b, so that

^(r0,Ho,Fo)/= has at most one element.

Example 4. Let H0 Zet © Ze2, e\ a, e\e2 b, exe\ c, e\ d.

If b c(mod 2), and äd - be l(mod2), then ^#(r0, ü0, F0)/= contains

precisely one class for every ^ 0.
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