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The main classification result can now be formulated in the following way:

Theorem 1 (Jupp). The assignment

In H2(X,Z), w2(T(X))

induces a 1-1 correspondence between oriented homeomorphism classes of
1-connected, closed, oriented, 6-dimensional topological manifolds with

torsion-free homology, and equivalence classes of admissible systems of
invariants.

Furthermore, a topological manifold X as above admits a C00-structure

if and only if the triangulation class i(X) vanishes; the C00-structure is

then unique.

Remark 1. The classification theorem is due to C.T. C. Wall in the

special case of differentiable spin-manifolds [W]; the final form above was

obtained by P. Jupp [J].
A. Zubr generalized Wall's result in another direction; he proved a

classification theorem for 1-connected, smooth spin-manifolds with not
necessarily torsion-free homology [Zl] ; in two further papers [Z2], [Z3] he also

obtains P. Jupp's classification, and he asserts in addition, that algebraic
isomorphisms of systems of invariants can always be realized by orientation
preserving homeomorphisms (diffeomorphisms in the smooth case).

Note that the first invariant of the system is completely independent
of the remaining invariants, so that the following splitting theorem holds:

Corollary 1. Every 1-connected, closed, oriented, 6-dimensional,
topological (differentiable) manifold X with torsion-free homology admits
a topological (differentiable) splitting X X0 ff (S3 x S3) as a
connected sum of a core A0 with b3(X0) 0, and copies
of S3 x S3. The oriented homeomorphism (diffeomorphism) type of X0
is unique.

Example 1. The 1-connected, closed, oriented 6-manifolds X with
H2(X, Z) 0 are S6 and the connected sums # rS3 x S3 of r ^ 1 copies
of S3 x S3[Sm].

1.2 Homotopy types

In order to describe the homotopy classification of the 6-manifolds
above, we need some more preparations.
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Let {H, F) be a pair consisting of a finitely generated free abelian

group H, and a symmetric trilinear form F; consider the following subgroup
of i/v/48//v:

UF: {/ e FF/4SH.\3u e H with l{x) 24w2 • v(mod48) Vx e H}

If (H',F') is another such pair, and a : HFF an isomorphism with
a *(F') F, then there is an induced isomorphism

a* : FL'v/48h'^ZV'F - FF/48//v/Up

of the quotients. Denote the class of a linear form I e Hv in the quotient

HF4,hFUf by [/].

Definition 2. Two systems of invariants {r,H,w,x,F,p) and

(r',H',w',T',F',p') are weakly equivalent iff r r', and there exists

an isomorphism a: HFF such that:

a(w) w\a*(F') F, and a*[p' + 24 7"] [p + 24T]

for all T e FF, T' e H'y with f x(mod2), f' T'(mod2)

With this definition we can phrase the homotopy classification in the

following way:

Theorem 2 (Zubr). The assignmentX- Z), w2

induces a 1-1 correspondence between oriented homotopy classes of
1-connected, closed, oriented, 6-dimensional topological manifolds with
torsion-free homology and weak equivalence classes of admissible systems

of invariants.

Remark 2. Zubr's theorem corrects and generalizes the homotopy
classification in the papers by Wall [W] and Jupp [J] ; he also treats manifolds
with not necessarily torsion-free homology, and states without proof that
algebraic isomorphisms of weak equivalence classes of systems of invariants

are always realizable by orientation preserving homotopy equivalences [Z3].

Example 2. Manifolds with b2{X) 1.

Let X be a 1-connected, closed, oriented, 6-dimensional manifold with
FL2{X,Z) Z. Splitting off possible copies of S3 x S3 we may assume

b3(X) 0. Choosing a Z-basis of FL2(X, Z) we see that systems of
invariants can be identified with 4-tuples (W, T, d,p) e Z/2 x Z/2 xZxZ
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where the 'degree' d corresponds to the cubic form. Such a 4-tuple is

admissible iff d(2x + W)3 (p + 247) • (2x + W) (mod 48)_holds for every

integer a. This is equivalent to p Ad (mod 24) if W 0, and to

p d + 24r(mod48) with d 0(mod2) if W ± 0.

Two admissible 4-tuples (W, T,d,p) and {W% f',d\pr) are equivalent

iff w' W,T' T and (d\p') ±(d,p). Taking the degree d non-

negative, we find:

Proposition 1. There is a 1-1 correspondence between oriented homeo-

morphism types of cores X0 with b2(X0) 1, and 4-tuples (W,T,d,p),
normalized so that d ^ 0, and p ^ 0 if d 0, which satisfy

p 4r/(mod24) if W 0, and d 0(mod2), p d + 24T(mod48)

if W± 0.

In order to classify the associated homotopy types we first have to determine

the subgroup UF associated to a given cubic form F. By definition we

find UF 0 if d 0(mod2), UF Z/2 if d l(mod2). Two normalized

4-tuples (W,T,d,p) and (Wr, f', d\p') are weakly equivalent iff
d' d, W' ÏV, and p + 247 s p' + 24rx(mod 48) if d 0(mod2),
p p'(mod 24) if d l(mod2).

Putting everything together, we find a single oriented homotopy type for
every odd degree d ^ 0, which is necessarily spin, and 3 oriented homotopy
types for every even degree d ^ 0; one of these 3 types has W F 0, the
other two are spin, and they are distinguished by p + 24T(mod48)
i.e. p 4<i(mod48), or p 4d + 24(mod 48).

2. Realization of cubic forms

In the previous section the (homotopy) topological classification of
1-connected, closed, oriented, 6-dimensional manifolds with torsion-free
homology has been transformed into an arithmetical moduli problem: to
describe the sets of (weak) equivalence classes of admissible systems of
invariants. In this section we begin to investigate the latter problem; we give
a simple criterion for the realizability of cubic forms by smooth manifolds,
and we describe, at least in principle, the classification of homotopy types of
manifolds with a given cohomology ring.
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