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(@) The restriction of ¥,(G; Q) to Z(G) N [G, G1] is zero.
(b) If %:(G; Q) # 0 then dimoAq(Z(G)) = 1.
The desired conclusion follows easily from (a), (b) and Theorem 4.2.
Theorem 5.7 raises the question: For what groups G of type F s
v1(G, Q) # 0? We give a necessary condition. Recall that a group H has type
F G if there is a finitely dominated K(H, 1) (i.e. K(H, 1) is a homotopy
retract of a finite complex).

PROPOSITION 5.8. If %:(G,Q)#0 then G is isomorphic to a
semidirect product (H,t|tht='=0(h) for all heH) where H
has type ¥ 9.

Proof. Let T € Z(G) be such that y;(G, Q) (1) # 0. By Theorem 4.2,
it follows that {t} € H,(G) = Gy, is of infinite order. Thus there is an
epimorphism p: G — Z with p(t) = n for some n > 0. Let H = ker(p).
Since T € Z(G), p~'(nZ) = H X Z and has finite index in G. Thus H X Z
has type .7 and so H has type .¥ 2. [l

Thus it is worthwhile to compute %, (G, Q) in terms of such a semidirect
product structure. The geometric problem underlying this is the study of
v1(X) where X is a mapping torus. We study this next, returning to the
group theoretic case in §7.

6. MAPPING TORI

In this section, we consider %;(X) and y;(X) when X is the mapping
torus of a map f: Z — Z. The main results are Theorems 6.3, 6.13, 6.14, 6.16
and Corollary 6.18. Applications to the aspherical case will be given in §7.

Suppose Z is a path connected space and has a basepoint v € Z. Given
a continuous map f:Z — Z, its mapping torus, denoted by T(Z, f), is
the space obtained from Z X [0, 1] by identifying (z, 1) with (f(z), 0) for
each z € Z. The image of (z,u) e Z X [0,1] in T(Z, f) will be denoted
by [z, u]. Choose a basepath ¢ from v to f(v) and let 6: H — H be the
self homomorphism of H = n,(Z,v) determined by f and o.

Let X =T(Z,f). Choose w=[v,0] as a basepoint for X and let
G = m,(X, w). There is a canonical map of X to the standard circle S!
(realized as complex numbers of unit modulus) given by: p;: X — S!,
pr(z,s]) = e?™is. Let i: Z & X be the inclusion z = [z, 0].
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Recall that T’ = 7, (%(X),id). Let I'si = n;(Z(S!),id). Let y:I—> X
be the path y(u) = [v, u] and let yo: I = X be the path vy, =vy(io o) !.
Define a continuous map P: XX — (S1)S' by P(g)(e?™*) = p;(g(yo(n))).
Then P induces a homomorphism Py : I — I'si. We define an identification
I'si 57 by sending the generator [s— (e2™¥ > e2mu+s))] e T's1 to 1 € Z.
The rotation degree of y € I' is the integer Py ().

We now describe some useful homotopies of X.

For a non-negative integer k, the k-th tumble is the homotopy
which “rolls the mapping torus through an angle of 2mk”; explicitly,
this homotopy, denoted by R,: X x [0,1] = X, is given by the formula
Ri([z,ul,s) = [fUks+ul(z), (ks + u) mod 1] where [ks+ u] is the integer
part of ks + u.

Whenever a map g: Z — Z commutes with f (i.e. fg = gf), there is an
induced “level” map g: X — X given by g([z, u]) = [g(z), u]; for example,
the k-th tumble, R, is a homotopy from idy to f k. We need a more general
procedure (see Proposition 6.2 below) for extending homotopies of Z to
homotopies of X.

A homotopy N:Z x I— Z eventually commutes with f if there
exists an integer m > 0 and a homotopy J:Z X I X I = Z with J(z, u, 0)
= fmoN(f(z),u),J(z,u,1) = fm+1 o N(z,u), J(z,0,5) = f" o N(f(2),0),
J(z,1,8) = fm o N(f(z), 1). Thus J makes the following diagram commute
up to homotopy rel Z x {0, 1} x I:

fxid N
ZxI > ZxI — Z
6.1) Iy L
m+1
z 5 Z = Z

This implies f” o N;o f = fm*+*1 o N; for i = 0,1; in our applications, N,
and N,; will be iterates of f.

a7 4= F
N
T i NP
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s=1
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FIGURE 1
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Define Ly ;. n:X X I = X (abbreviated to L’) by the formula:
[fm o N(z,5),2u] if 0<

1
\U\‘Z‘

L' ([z,ul,s) = .
e e 2) {[J(z,s,2—2u),0] if <u<l.

and define K: X X I = X by:

z,u(l +9)] if o< u<s
K([z,ul,s) = [z, u( o 2
[z,s(1 —u)+u] if 3<u<]l

(K is a “linear” homotopy from idy to a map which sends the points [z, u],

<u<l, to [z 1] = [£(z),0].)

Observe that L'( - ,0) = K( -, 1) o (f" > No)and L'( -, 1) = K( -, 1)
o (f™ < N;). Thus, for N, J and m as above, we have:

PROPOSITION 6.2. The concatenation

/\ T

L(N’J’m) =Ko (fm O Ny X ld) *L(,N,J,m) * (KO (fm o N; X ld))—_1

T S
is @ homotopy from fmo N, to fmoN,. [

(For a homotopy Q, Q! means the homotopy Q ~!(x, s) = Q(x,1 — 5).)

Next, we will build special elements of I'. The map f:Z—~>Z
is a periodic homotopy idempotent if there exists r > 0 and g > 0 such
that f7 is homotopic to fr*9; it is not assumed that this can be
achieved by a basepoint preserving homotopy. If for some r >0 and
g > 0 there is a homotopy N: f"= fr+e for which there exist J and
m > 0 making Diagram 6.1, commute up to homotopy rel Z x {0, 1} x I,
then we say that f is eventually coherent. In this case, Proposition 6.2 gives
a homotopy L(N,,,m):j?”m :f’“”m. The concatenation S =S¢ n.7, m
=R, g+m*x Ly s m*x R, is a homotopy from idy to idy whose
rotation degree is g. Given f, the least ¢ > 0 for which there exist r, N, J
and m as above (assuming that they exist at all) is the period of f.
Then r and m may be chosen as large as desired.

These conditions on a map f which give rise to an element [S] € T having
positive rotation degree, are not arbitrary. Rather, they are the general case:

THEOREM 6.3. Let f:Z— Z be a map for which the rotation degree
homomorphism Py :I" = Z isnon-zero. Let q be the least positive element

of P.(I'). Then [ isan eventually coherent periodic homotopy idempotent
of period q.
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Before proving this, we set up notation for points of the infinite
mapping telescope of f, i.e. the infinite cyclic cover of X whose fundamental
group is H. This space, denoted by X, is the quotient of the disjoint union
II,.,Z x {n} x [0, 1] obtained by identifying (z, n, 1) with (f(z), n + 1, 0)
for all n. The image of (z, n, u) in X will be denoted by [z, n, u]. The
covering projection X — X is given by [z, n, u] — [z, (n + u) mod 1]. The
space X is a “two-ended union” of mapping cylinders: we write M(f), for
the subset of points [z, n, u] such that 0 < u < 1, and Z, for the subset of
points [z, u, 0].

Proof of 6.3. Let F”:idyx = idx represent y € I' of rotation degree g,
and let FY: X x I - X be the basepoint preserving lift of F. The map F" is
a homotopy between idy and #9, where & ([z,n,u]) = [z, n+ 1, u] is
“translation by 1”7. Let i,,:Z—*)_( be the “inclusion” of Z as Z,, i.e.

i,(z2) = [z, n,0]. The composition Z X Iloild)—( xI5 X gives a homotopy
between i, and i,. The formula (z,s) [f59(z), [sql, sq — [sq]) gives
a homotopy between i, and i, © f9. Combining the two, we get a homotopy
®:i,=1i,0 f9. The track of ®:Z X I—- X lies in U/ 9 ' M(f), for
suitable integers r' <0< g <r + ¢g. Form a homotopy ¥:Z X I— }_(,
W:i,,,0 fr=1i,,,0 fr*9, whose entire image lies in Z,,,, by “pushing”
the track of @ along the mapping telescope into Z,,,; explicitly, if
®(z,8) =[z',n,u’l] then ¥(z,5) =[f"*2-""(z'),r + q,0]. Identifying
Z, ., with Z, we get a homotopy between f” and f"*4.

%r +y

. r
oy ff (5

LA aLAASL A
. '

r+g

L § (3

r-{-z
r+;

FiGure 2

It remains to prove eventual coherence. Since F7 is Z-equivariant
(with respect to the Z-action generated by @), there is a Z-equivariant
homotopy ¥: X X I — X such that ¥ = ¥ o (ip X id).
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Consider the diagram:

Zx1 "5 zxr 3 x b X

} i xid }ioxid } 1@

XxI = XxI % X = X
T xid 18
ZxI > X

The two middle squares commute. The upper right square commutes up to the
homotopy given by:

[z, n, u + 5] if 0<s<
[f(2),n+1lu+s—1) if1-u<s<

(Iz, n, ul, s) = {

There is a corresponding homotopy for the upper left square. Thus,
the diagram

ZxI —» X
lfxid lfx
ZxI > X

commutes up to a homotopy J':¥ o (f xid) = f o ¥ which has the
property that, for i=0 or 1, the restriction J'|:Z X (i} x I~ X is
homotopic rel Z x {i} x {0, 1} to a constant homotopy. Thus, adjusting J*,
we obtain a homotopy J”:Z X I X I—- X rel Zx{0,1} x I between

¥ o (f x id) and f o ¥, The argument is finished by “pushing” the track
of J' along the mapping telescope into Z,.,:+,» where r+q + m 18
sufficiently large: the details are similar to the construction of ¥ from ®. We

then obtain a homotopy commutative diagram similar to (6.1), showing that
£ is as claimed. [l

Remark. We do not know if every periodic homotopy idempotent
f:Z — Z is eventually coherent. The special case of interest for group theory
is the case where Z is aspherical and f is a homotopy equivalence so that we
are essentially concerned with an element of the outer automorphism group
of m,(Z). A consequence of Proposition 7.3 is that f is indeed eventually
coherent in this situation. In the more general case where f is homotopy

equivalence but Z is not necessarily aspherical, the obstruction theory of [C]
is relevant; see [GN,].




36 R. GEOGHEGAN AND A. NICAS

If (r, N, J, m) are, as above, the data for an eventually coherent periodic
homotopy idempotent of period g, we can form (r, N % (f70 N),
J* (f90J),m). Here, N® = N % (f90 N): fr = fr+24_ and the conca-
tenation J@® = J % (f? 0 J) takes place in the first I-factor, so that it
coincides (after suitable reparametrization) with J on Z X [O, %] X I
and with f?90 Jon Z x [%, l] X I. One verifies that (r, N, J@ m) make
Diagram 6.1 commute, hence one has, as above, S, N®, @, m) = Rri2g4m
* L n@, @), m * R 7., a homotopy from idy to itself whose rotation

degree is 2q. Iterating this procedure one gets, for any positive integer v,
St N s my = Rrvvgem X L(j\,l(v),m)’m) * R,‘+1m, a homotopy from idy
to itself of rotation degree vg.

PROPOSITION 6.4. With f and q >0 as in Theorem 6.3, and Vv
a positive integer, let v € I' have rotation degree vq. Let (r,N,J, m) be
data exhibiting [ as an eventually coherent periodic homotopy idempotent
of period ¢q. Then there exists & €I of rotation degree 0 such that

Y = 6[S(r,N(V),J(v),m)].
Proof. Take & to be Y[S¢, v, s, m]1 71, []

Elements of I having rotation degree O can be ‘“regularized”.
Let Fd9:idy = idy represent such a ©&. The basepoint preserving lift
is F8: X xI— X, a homotopy from idy to idy. As in the proof
of Theorem 6.3, there is an integer /> 0 such that the track, under
F3, of every point [z,n, u] € X can be “pushed” equivariantly into
{[y,n+1L,ul|y e Z}. Thus, by an obvious further adjustment, we have:

PROPOSITION 6.5. If & has rotation degree 0, then for any sufficiently
large | (dependent on §), F?® is homotopic rel X x{0,1} to a
homotopy of the form R,k L(y ;o % R ' where N:fl=fl s
constructed from F3 as in the proof of Theorem 6.3. L[]

We now prepare to compute the derivation 5(1(X ):I' > HH,(ZG).

In the remainder of this section we assume that Z is a finite CW complex,
that the map f is cellular and that the basepath o is cellular. Then
X = T(Z, f) inherits a natural CW structure. We will also assume that f is
a m,-equivalence; i.e. the induced map f.:7m(Z,v)— n,;(Z, f(v)) is an
isomorphism. Thus 0: H — H, defined above, is an automorphism. Then the
group G is a semidirect product of H with 7T = m(S!, 1); there is an exact
sequence: H>>> G > T where H»>— G is induced by the inclusion i: Z & X
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and G— T is induced by p;. We write ¢ = [yo] ~! € G, projecting to a
generator of 7, so that 0: H— H is given by At tht~'. We make this
choice because we deal with right modules; here and in [GN,] we prefer “#”
rather than ‘““#~1” to appear in our matrices. ~

Since 0:H— H 1is an isomorphism, the universal cover, ~X, of
X = T(Z, f) can be thought of as the mapping telescope of f : Z = Z. Then
we have the following model, denoted by C, ()Z' ), for the cellular chain
complex of X. Let (Cy (Z), 25) be the cellular chain complex of 7. Define
Cs«(X) by

Co(X) = (Co-1(2) @ Cu(2)) @z ZI1,171]

where the right action of G on C, ()~( ) is given as follows: if At/ € G and
a®teC, ()~() then (a ® tH)ht/ = abi(h) Q t'*/. A choice of oriented
lifts of the (n — 1)-cells and the n-cells of Z determines a finite ZG basis

for the right ZG-module C, ()~( ). The matrix of the boundary operator
X6n+ 1:Chi1 (X) = C,(X) with respect to the given ZG bases is:

[20,] 0

(= D" T = [fult) [20441]
where [zén] is the matrix of Zén, [fn] is the matrix of fn and 7 is an
identity matrix of the same size as [ fn]. For background on the following
calculations, the reader is referred to [GN,, §4]. See also the Sign
Convention in §1.

Let (?jk)n: C, (f( ) — CnH(f( ) be the chain homotopy defined by

the k-th tumble R,. The matrix for (?/’;’k),, is:

0 (=D P Eig ([falt)!

0 0 '

Thus we have:

PROPOSITION 6.6. trace(é X /27,() is the Hochschild 1-chain

~ k-1 —~
L (=Drrace(((/,1) @ X (1£:10)) .

n=>0

Proof. The identity d(1 ® 1 ® g) = 1 ® g implies that terms of the
form trace(I ® M) are boundaries and can therefore be ignored. [

Next, suppose f is an eventually coherent periodic homotopy idempotent.
As above, we have r >0, N: f"= fr+4, m >0, and J: Z X [ X [ — Z;
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and Ly, s, m is a homotopy from f7*+™ to fr+a+m_ By Proposition 6.2,
L (n,;,m) 15 the concatenation of three homotopies: the first and third of
these have zero matrices at the chain homotopy level, and the second,
which is Ly ; n, is easily seen to give a chain homotopy whose block
for C,(X)— C,,(X) is

[f™ [ A o] 0
w il

Here, ./ : Cx (Z ) = Cy 4 (Z ) is the chain homotopy defined by N, and W is
a matrix whose exact nature need not concern us. Because of our sign
conventions, and the fact that the upper right block is zero we get:

PROPOSITION 6.7. Let Zn.s.m:Cs(X) = Cy.1(X) be the chain
homotopy determined by L,; m . Then trace(5® L 1.m) = 0. L]

Now, let & e I' have rotation degree 0. Then n,(8) lies in HC G
(where m is defined in §1). By Proposition 6.5, we may take F°® = R,
* L(_NI’ 7,00 X R ;' for any sufficiently large /. Under the homotopy
F3:idy = idy, the basepoint traverses a loop representing 1. (8). Let D?® be
the chain homotopy defined by F8. We rewrite 14 (8) = ('L ()t
At the matrix level, we then have:

Dd =% — Linsoy(t (8)t=1)t! — Zt-'(tMx(8)"1) .

Here, we have used the fact that the matrix of a chain homotopy for a
concatenation A x B is &/ + #g~! where «/ and % are the matrices of
A and B and g € G is the element represented by A (basepoint X I), and
the matrix for A ~!'is — .o/g. In what follows, recall the right action of I" on
Hochschild chains and homology described in §2. Using Proposition 6.7
we get:

COROLLARY 6.8. If & eI has rotation degree 0, then X,(X)(8)
is represented by the Hochschild cycle

trace(d ® D?) = trace(d ® @1) 1-8-1H
for any sufficiently large | (dependent on §). [

Now we return to the situation discussed in Theorem 6.3 and Propo-
sition 6.4. We have y e I' of rotation degree vq. By Proposition 6.4,
vy = 8[SM] where 8 is represented by F?, and, for suitably large r and m
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(depending only on f), S™ = Rriygim X Livw, s, m % R . Under F,
the basepoint traces out a loop representing

Ny (8)2-r=va=m(grevarmn (8) ~Inu(y)t =" ~") 1 ™ = ne(¥) .

Here, the four factors correspond to the four parts of the concatenation.
Thus

trace(d ® D) = trace(d ® D?®) + trace (8 ® @,men#(éi)—l)
— trace(d ® Q(N,J,m)l‘”"“mﬂ#@)—l)
— trace(®@ @ Z,om(¥)1) .
Using Proposition 6.7 and Corollary 6.8 and the right I'-action described
in Proposition 2.6, this becomes:
trace (0 ® DY) = trace(d ® @1)(1 -8+ trace(é X jz?,wﬁm)?)—l
— trace(é X ﬁéﬂ,m}y—l .

In particular, if we enlarge / or r+ m so that /=r+ vg + m, and
set w =r + m, we get:

PROPOSITION 6.9. Let vy € I' have rotation degree vq >0 where q
is the least positive element of P4([). Then X,(X)(y) Iis represented
by the Hochschild cycle:

L+vg—1

Y (- Drtrace(([f10) @ Y (1f210)7)

n>=0 i=u

+ Y (= Drtrace(([f-10) ®@ Y (Lf210)) (A -y~ D)
=0

n=0 i

for any sufficiently large positive integer . (dependent on vy). U]

Remark 6.10. By Corollary 6.8, the same formula holds for y of rotation
degree 0; in that case, the first term in Proposition 6.9 is trivial.

If the subgroup I'' C IT' is finitely generated by vy.,...,v, and if the
number p in Proposition 6.9 is taken to be the maximum of the numbers p;

corresponding to vy;, then we have an inner derivation % :I'' - HH,(ZG)
defined at the level of cycles by:

Y p—1 —~
Zy)= Y (-Drtrace(([f»10) ® Y. ([f.10)) A —y-1).
=0

n=0 i

This gives:
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COROLLARY 6.11. If i:T'"S T' is the inclusion of a finitely generated
subgroup, there is an inner derivation <% such that for all vy eI’ of
rotation degree vq > 0, (X,(X) — %) (y) is represented by the Hochschild
cycle

u+vg—1

Y (- Drtrace(([f.18) ® Z (Lf18)7)

n>=0

which therefore depends only on the rotation degree of vy. In particular,
the derivation X,(X) — % represents i*(y;(X)). [

Now we can compute %;(X):I' = H;(X) = G, using Definition A;.

The automorphism 6: H — H induces an automorphism 0,,: Gap, = Gay .
We identify G,, with coker(id — 0,,) X Z by sending #t” € G to ({4}, — n).
If vy eI’ has rotation degree 0, it follows from Corollary 6.8 that
v (X)(y) =0. If y e’ has rotation degree vg > 0, we obtain %;(X) (y)
in two stages: first apply the augmentation, €, to the right sides of the
tensors in Proposition 6.9, yielding:

w+vg—1

Y (- Drtrace(([f210) ® Z [f.]) € C\(ZG, Z)

n>=0
and then apply Proposition 2.1 to get:

u+vg—1

Y Z (— 1)n A(trace ([ £, 1¢1F51)

n>=0 =

u+vg-—1

= ) Z (- 1)” [A(trace([fnl [f51) + trace([fi;DA(r)]

n=0 P=

which simplifies to:

(6.12)
p+vg—1 _ . p+vg -1
xl(X)(v)=(Z E (- DrAtrace(LAILD), = X L(f"))

n=0 i=

e coker(id — 6,,) X Z .

Here, L(f’) is the Lefschetz number of f‘. Note that the matrix
A([f,]) has entries in coker(id — 0,,), and for large p the sequence
(L(f*), ..., L(fr+ve-1)) is periodic since f" = fr*9.

Summarizing:

THEOREM 6.13. Let f:Z—Z be a cellular m,-equivalence of a
connected CW complex, and let X be the mapping torus T(Z, f).




HIGHER EULER CHARACTERISTICS (I) 41

(i) if f is not an eventually coherent periodic homotopy idempotent,
then v,(X)(y)=0 forall yel;

(ii) if f is an eventually coherent periodic homotopy idempotent of
period q, and vy €T has rotation degree vqg > 0, the two terms
in (6.12) give the two factors of %:(X)(y) € coker(id —8,,) X Z;
if v has rotation degree 0, %1 (X)(y)=0. [

Remark. 1If f is not cellular then the above theorem can be applied to
any cellular approximation of f. Since any two cellular approximations of f
are homotopic, the corresponding mapping tori are homotopy equivalent.
By homotopy invariance (Theorem 1.2), this procedure gives a well defined
answer.

We get cleaner results when f is also a homotopy equivalence. If,
in that case, ¢ is the least positive element of P, ("), the proof of
Theorem 6.3 shows that f satisfies the eventually coherent periodic homotopy
idempotent property with r = m = 0; i.e. there is N:id, = f9, and J
making Diagram 6.1 commute with m = 0. The point here is that the
inclusions Z,— X and Iz M(f), — X are homotopy equivalences.
Since it is now possible to “push” backwards as well as forwards in the
telescope X, we can also take / = 0 in the formula preceding Proposition 6.9.
Thus we can take p = 0 in Proposition 6.9:

THEOREM 6.14. If f is a homotopy equivalence and an eventually
coherent periodic homotopy idempotent of period q, and yeT
has rotation degree vq >0, then >~(1(X) (v) is represented by the
Hochschild cycle

vg — 1

Y (= Drtrace(([£10) ®@ Y (1fn10)0);
I=0

n=0
and

vg—1 _ ‘ vg —1
x1<X)<v)=(Z Y (-DrA(trace((f,11:1), - ¥ L(f"))-
i=0

nz0 =0
These formulas are determined by the rotation degree of v. U
Example 6.15. Let f =id,. Then X = T(Z,idz) = Z x S. Let v > 0.

The v-tumble, Z,, represents an element of T — 1 (€(Z x §1),id) of
rotation degree v. By Theorem 6.14, we have:

X1(Z x SY)((2,]) = 4(2) T, (t@ 11_ ’V) |
-
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This formula also holds for v < 0. It follows that y;(Z x S")([%4,])
= (0, —x(Z)v) = x(Z)v{t} where {t} eH,(Zx S) = H\(Z) ® H,(S!) is
the generator of the H,(S!) summand determined by ¢.

There is a useful simplification of these formulas in the rational case.
The identity

—trace ([ f,12)*1) ® 1 + (i + Dtrace([f.1t @ ([f12)7)
_ d( y trace([fn]t®([fn]t)"‘”1®([fn]t)j“1)
ji=1

demonstrates that ﬁ trace ([ f,17)*1) ® 1 is homologous to trace([ falt
® ([f.1¢)7). We can substitute in Proposition 6.9 and Theorem 6.14. Write
[ f] for the matrix @ ,(— 1)"[f,]. The matrix of the map f*is [JZ¢6/([f]),

so ([f1¢) = [fi]1¢!. Thus we get:

THEOREM 6.16. X 1(X;Q)(y) is represented by the Hochschild cycle

b+vg _ il _

Y i(trace[/ D@1+ ( Y, 7 (trace[f )1’ ® 1) I1-v-1h
i=p+1 i=1
for any sufficiently large positive integer | (dependent on vy). When f
is also a homotopy equivalence then X;(X;Q)(y) is represented by the
Hochschild cycle

f Pltrace[fDr@1. O

Remark. The formula for 5(1(X ; Q)(y) above can be expressed in
terms of the “reduced Reidemeister traces” of the iterates f*,n = 1, ..., vq.
This trace of f© take values in the ‘“reduced’ 0-th Hochschild homology
group of ZH with 67-twisted coefficients; see [GN,, §5].

The computation of y;(X; Q) naturally leads one to consider the
homology Reidemeister trace of a cellular map f: Z — Z, denoted by L”*(f).
It is the element of H,(H) = H,, given by

Li(f) = X (= DrA(trace([/,]) -
nz0
If k is a commutative ring of coefficients, let L*(f; k) denote the image
of L"(f) under the homomorphism H,(H)— H,(H;k). Let L"(f;k)
ecoker(id—eab®idk_) denote the image of L*(f;k). It is easy to
see that L"(f) and L*(f; k) depend only on the homotopy class of f.
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(Both L"(f; k) and L"(f; k) have an interpretation in terms of Nielsen fixed

point theory, but we will not make use of this.) ‘
Theorem 6.16 together with the proof of (6.12) yields the following

formula. For all sufficiently large w:

hive - . -
LXQM = L GL'(S5Q, L)
i=p+1
Since this formula is valid for all sufficiently large p, it is1 easy to see
(because of periodicity and the appearance of the coefficients ;) that:

COROLLARY 6.17. For all sufficiently large 1, L"(fi;Q) = 0. L]
Thus:

COROLLARY 6.18. For all sufficiently large ..

n+vg

aoe (o, 'y L(f")) .

i=p+1

In particular, if f is also homotopy equivalence
vg —1 .
%1 (X5 Q) (y) = (0, — X L(f’)) .
i=0
7. MORE ON GROUPS OF TYPE %

We consider in more detail the special case of the mapping torus of a
homotopy equivalence of an aspherical complex.

Let H be an arbitrary group, let 6: H = H be an automorphism, and
let G be the semidirect product { H, t| tht—!=0(h) for all h € H). Write
Fix(8) = {h € H|0(h) = h} and write {x) for the cyclic subgroup generated
by x € G. Let Out(H) = Aut(H)/Inn(H) be the group of outer auto-
morphisms of H, i.e. the quotient of the group, Aut(H), of automorphisms
of H by the normal subgroup Inn(H) of inner automorphisms.

LEMMA 7.1. If O has infinite order in Out(H), then Z(G)
=Z(H)NnFix(9). If 6  has finite order r in Out(H), and
ho € H is such that 07(-) = hy(- )ho_l, there are two cases:

(1) No positive power of hy lies in Z(H)Fix(8). Then Z(G) = Z(H)
N Fix (0).
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