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INTRODUCTION

Nowadays, complex or algebraic manifolds are classified by Kodaira
dimension. This classification is natural and fruitful, but in the complex
case another point of view is possible. In this approach one starts with a
topological or differentiable manifold X and asks for all complex or
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algebraic structures on X. Though this more traditional way of thinking
can’t replace the classification by Kodaira dimension, it remains useful and
attractive and it has led to a number of wellknown if not famous problems.
It suffices to recall Severi’s problem: find all complex structures on P2,
considered as a topological 4-manifold, or the same question asked for
S2 x S? seen either as a topological or a differentiable manifold. For
complex dimension 2 the work of Freedman on the topology of 4-folds as
well as the work of Donaldson and many of his followers of course put this
point of view very much at the centre of attention [O/V], [F/M].

In the past decades progress on the Kodaira classification for dimen-
sion 3 has been enormous ([Mo], [K/M/M], [Kol]), but the same can’t be
said about the relations between the topological and differentiable structures
of 6-manifolds and the complex or algebraic structures they admit.

Let us restrict ourselves to the simplest case, the case of compact,
oriented, simply-connected 6-manifolds without torsion. Their topological
classification was carried out by Wall and Jupp ([W], [J]), who also deter-
mined which of them admit a differentiable structure, and for these showed
that the differentiable classification coincides with the topological classifi-
cation. This does not hold for the homotopy classification; in many
cases there are even infinitely many homeomorphism classes of one and the
same homotopy type. Apart of course from Stiefel-Whitney classes,
Pontrjagin class and triangulation class the essential invariant is the cup
form H?*(X,7Z)x H*(X,Z) x H>*(X,Z) > H°(X,Z)(=Z). It is not
difficult to characterize those forms which arise as cup forms of a 6-fold
in question (below), but it remains very difficult to classify cubic forms up
to GL(Z)-equivalence. Relatively few results are known in this direction,

even for the lowest ranks.
The corresponding 4-folds are the simply connected ones, i.e. the 4-folds

occurring in the work of Freedman and most of the papers of the Donaldson
school. Here the crucial invariant is a unimodular form on H?(X, Z),
namely the cup form H?*(X,Z) X H*(X,Z) > H*(X, Z). For differentiable
manifolds this form completely determines the homeomorphism type (this
also holds in the topological case if the cupform is even, whereas for odd
forms there are two homeomorphism types), but by no means for the
diffeomorphism type. So considering the relation between the homotopy, the
topological and the differential classification there is a big difference between
dimensions 4 and 6. The next question: which topological 4-folds carry a
complex structure, is equivalent to asking which unimodular, Z-valued
symmetric bilinear forms are realisable by complex or algebraic surfaces.
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It is related to the well-known inequality ¢; < 3¢, and has been solved to
a considerable extent.

Though in the case of 6-folds the corresponding question about the
realisability of cubic forms is definitely weaker than the question which
6-folds carry a complex or algebraic structure, it still remains of much
interest. In the second half of this paper we say something about algebra
and arithmetic of cubic forms and consider the apparently largely untouched
question of the realisability of complex forms by complex manifolds. Apart
from a considerable number of examples some conditions for Kahler
manifolds are given. And to show how few 6-folds of the type in question
actually carry Kahler structures, we add a theorem about Ké&hler structures
on the set of 6-folds with b, = 1, by < constant and w, # 0.

The first part of this paper surveys the results of Wall and Jupp referred
to before, and deals with the homotopy classification. By putting together
(for the first time?) all this in a rather systematic way we hope to contribute
to the knowledge of complex 3-folds from a topological point of view.

Acknowledgements: We would like to thank the following mathematicians
for very helpful remarks and suggestions: F. Grunewald, G. Harder,
F. Hirzebruch, and R. Schulze-Pillot. We also want to acknowledge support
by the Science project ‘“Geometry of Algebraic Varieties’”” SCI-0398-C(A);
by the Max-Planck-Institut fiir Mathematik in Bonn, and by the Schweizer
Nationalfond (Nr. 21-36111.92).

1. TOPOLOGICAL CLASSIFICATION OF CERTAIN 6-MANIFOLDS

The topological classification of 1-connected, closed, oriented,
6-dimensional manifolds has been developped in a sequence of papers by
C.T.C. Wall [W], P. Jupp [J], and A. Zubr [Z1], [Z2], [Z3]. Roughly
speaking, their main result is that the topological classification of these
6-manifolds is equivalent to the arithmetic classification of certain systems
of invariants naturally associated with them.

The aim of this section is to review these results and to reformulate the
arithmetic classification problem in a way which makes it accessible to further
investigation.

1.1 HOMEOMORPHISM TYPES AND C *®-STRUCTURES

Let X be a closed, oriented, 6-dimensional topological manifold; we
assume that X is 1-connected with torsion-free homology. The basic invariants
of X are [J]:
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1) H%*(X, Z), a finitely generated free abelian group;
1) b3(X) = rkz H?*(X, Z), a natural number which is even since H? (X, Z)
admits a non-degenerate symplectic form;
1) Fy: H>*(X,Z) Q H*(X,Z) ® H*(X,Z) > Z, a symmetric trilinear
form given by the cup-product evaluated on the orientation class;

iv) p1(X) €e H*(X, Z), the first Pontrjagin class which is always integral
because the inclusion of BO in BTOP induces an isomorphism
H*(BTOP,Z) > H*(BO, Z) [J];

V) w,(X) e H?>(X,Z,;), the second Stiefel-Whitney class; w,(X) is
determined by the Steenrod square Sq?: H*(X,Z,,) > H%(X,Z,,),
S$q*(8) = ma(X) - EVE e HY(X,Z,,) [W];

vi) (X)) e H*(X,Z,,), the triangulation class which is the obstruction
to lifting the stable tangent bundle of Y to a PL bundle [J].

These invariants satisfy one fundamental relation
(*) W3=(p (X)+24T) - W(mod 48)

for all integral classes W e H?*(X,Z), T € H*(X,Z) with W= w, (X) (mod 2),
T = T(x) (mod 2).

For smooth manifolds (*) is simply the ﬁ—integrality theorem of A. Borel
and F. Hirzebruch [B/H], whereas for topological manifolds additional
surgery arguments are necessary [J].

In the sequel we shall use Poincaré duality to identify H*(X, Z) with
Hom,(H?2(X,Z),Z), so that p,;(X) can be considered as a linear form
on H?(X,Z), and we will write x -y -z instead of Fx(x ® y ® z) for
elements x, y,z € H*(X, Z).

DEFINITION 1. A system of invariants is a 6-tuple (r, H, w,t, F, p) con-
sisting of a non-negative integer r, a finitely generated free abelian
group H, elements weH/,y; and 1€ HY/,yv, a symmetric
trilinear form F e S*HY, and a linear form p e HY. The system
(H,r,w, 1, F,p) is admissible iff for every W e H and T e HY with
W= w(mod2) and T = 1(mod2) the following congruence holds:

(*) W3=(p+24T) (W) (mod 48) .

Two systems of invariants (H,r,w,t,F,p) and H',r',w’,t",F',p’)
are equivalent iff r =r', and there exists an isomorphism o:H — H’
such that:

a(w)=w'", a*(t)=1, o*F)=F, a*(p)=p.
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The main classification result can now be formulated in the following way:

THEOREM 1 (Jupp). The assignment
X (28, H2(X, ), wy (X), 7(X), Fx, p1 (X))

induces a I-1 correspondence between oriented homeomorphism classes of
I-connected, closed, oriented, 6-dimensional topological manifolds with
torsion-free homology, and equivalence classes of admissible systems of
invariants.

Furthermore, a topological manifold X as above admits a C=-structure
if and only if the triangulation class t(X) vanishes; the C*-structure is
then unique.

REMARK 1. The classification theorem is due to C.T.C. Wall in the
special case of differentiable spin-manifolds [W]; the final form above was
obtained by P. Jupp [J].

A. Zubr generalized Wall’s result in another direction; he proved a
classification theorem for 1-connected, smooth spin-manifolds with not
necessarily torsion-free homology [Z1]; in two further papers [Z2], [Z3] he also
obtains P. Jupp’s classification, and he asserts in addition, that algebraic
isomorphisms of systems of invariants can always be realized by orientation
preserving homeomorphisms (diffeomorphisms in the smooth case).

Note that the first invariant @ of the system is completely independent
of the remaining invariants, so that the following splitting theorem holds:

COROLLARY 1. Every I-connected, closed, oriented, 6-dimensional,

topological (differentiable) manifold X with torsion-free homology admits

a topological (differentiable) splitting X = XO#D%Y—)(S3 X S83) as a

connected sum of a core X, with b;(Xy,) =0, and @ copies

of 83X 83. The oriented homeomorphism (diffeomorphism) type of X,
IS unique.

EXAMPLE 1. The I-connected, closed, oriented 6-manifolds X with
H,(X,Z) =0 are S¢ and the connected sums § ,S3 x S of r > 1 copies

of §3 x S3[Sm].
1.2 HOMOTOPY TYPES

In order to describe the homotopy classification of the 6-manifolds
above, we need some more preparations.
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Let (H,F) be a pair consisting of a finitely generated free abelian
group H, and a symmetric trilinear form F; consider the following subgroup
of HV/48 HY.

Up:={le H"/ gy | Ju € H with I(x) = 24u? - x(mod 48) Vx € H} .

If (H',F’") is another such pair, and a:H — H’ an isomorphism with
a*(F’) = F, then there is an induced isomorphism

(1*ZH’V/4gHrv/U;:_)HV/48Hv/UF

of the quotients. Denote the class of a linear form / € HV in the quotient
HY/guv/u, by [I].

DEFINITION 2. Two systems of invariants (r,H,w,1,F,p) and
(r'xH',w',t',F',p") are weakly equivalent iff r =r’, and there exists
an isomorphism o:H — H’ such that:

a(w) =wi,a*(F')=F, and o*[p’'+24T'1 = [p + 24T]
forall Te H,T'e H'Y with T=1(mod2), T’ = 1’'(mod2).

With this definition we can phrase the homotopy classification in the
following way:

THEOREM 2 (Zubr). The assighment
X = (2, H2(X, ), w(X), ©(X), Fx, p1 (X))

induces a 1-1 correspondence between oriented homotopy classes of
1-connected, closed, oriented, 6-dimensional topological manifolds with
torsion-free homology and weak equivalence classes of admissible systems
of invariants.

REMARK 2. Zubr’s theorem corrects and generalizes the homotopy
classification in the papers by Wall [W] and Jupp [J]; he also treats manifolds
with not necessarily torsion-free homology, and states without proof that
algebraic isomorphisms of weak equivalence classes of systems of invariants
are always realizable by orientation preserving homotopy equivalences [Z3].

EXAMPLE 2. Manifolds with b,(X) = 1.

Let X be a 1-connected, closed, oriented, 6-dimensional manifold with
H,(X,Z) = Z. Splitting off possible copies of S3 x S3 we may assume
b;(X) = 0. Choosing a Z-basis of H?(X,Z) we see that systems of
invariants can be identified with 4-tuples (W, T, d,p)eZl,, X L,, Xx L X Z
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where the ‘degree’ d corresponds to the cubic form. Such a 4-tuple is
admissible iff dQx + W)3=(p +24T) - 2x + W) (mod 48)_holds for every
integer x. This is equivalent to p = 4d (_mod 24) if W=0, and to
p =d + 24T (mod 48) with d = 0(mod 2) if W # 0.

Two admissible 4-tuples (W, T, d, p) and (W', T',d’, p') are equivalent
iff W' =W, T'=T and (d’,p’) = +(d,p). Taking the degree d non-
negative, we find:

PROPOSITION 1. There is a 1I-1 correspondence between orient_ed _homeo-
morphism types of cores X, with b,(Xy) =1, and 4-tuples (W, T,d,p),
normalized so that d >0, and p=>=0 if d=0, which satisfy
p=4dmod24) if W=0, and d=0(@mod2),p=d + 24T (mod48)
if W%0.

In order to classify the associated homotopy types we first have to deter-
mine the subgroup Upr associated to a given cubic form F. By definition we
find Up=0 if d =0(mod2), Ur=2Z,, if d = 1(mod 2). Two normalized
4-tuples (W, T, d,p) and (I/_V’, T, d’,p’) are weakly -equivalent iff
d =d, W' =W, and p+ 24T =p’ +24T'(mod48) if d = 0(mod?2),
p = p’'(mod 24) if d = 1 (mod 2).

Putting everything together, we find a single oriented homotopy type for
every odd degree d > 0, which is necessarily spin, and 3 oriented homotopy
types for every even degree d > 0; one of these 3 types has W # 0, the
other two are spin, and they are distinguished by p + 24 T(mod 48)
i.e. p = 4d(mod 48), or p = 4d + 24 (mod 48).

2. REALIZATION OF CUBIC FORMS

In the previous section the (homotopy) topological classification of
1-connected, closed, oriented, 6-dimensional manifolds with torsion-free
homology has been transformed into an arithmetical moduli problem: to
describe the sets of (weak) equivalence classes of admissible systems of
invariants. In this section we begin to investigate the latter problem; we give
a simple criterion for the realizability of cubic forms by smooth manifolds,

and we describe, at least in principle, the classification of homotopy types of
manifolds with a given cohomology ring.
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2.1 COHOMOLOGY RINGS OF 6-MANIFOLDS

Let (r, H,w, 7, F,p) be a system of invariants as in section 1; recall
tpat it is admissible iff for every We H, T € HY with W = w(mod 2),
T = t(mod 2) the following congruence holds:

(*) W3=(p+24T) (W) (mod 48) .

LEMMA 1. (r, H, w,r,F, p) is admissible if and only if there exist
WoeH, To e HY with W, = w(mod?2), To = t(mod?2), such that

i) Wb=(p+24To) (Wo) (mod 48)
i) p(x)=4x3+ 6x2Wo + 3xW5(mod24) Vx e H.

Proof. Obvious since the set of integral lifts of w is a coset W, + 2H.

DEFINITION 3. Let F e S3HY be a symmetric trilinear form on a
finitely generated free abelian group H. An element W e H is
characteristic for F iff

(%) Xy (x+y+W)=0(mod2) Vx,ye H.

LEMMA 2. W e H is a characteristic element for F e S*HY if and
only if the function ly:H—Z, [y (x):=4x3 + 6x2W + 3xW?2 s linear
in x modulo 24.

Proof. ly(x+y)=Ilp(x)+1Ip(y)+12(x%2y + xy> + xy W), whence the
assertion.

The existence of characteristic elements is a necessary and sufficient
condition for a cubic form F € S3HVY to be realizable by a manifold. In fact,
we have:

PROPOSITION 2. A given cubic form F € S3HY on a finitely generated
free abelian group H is realizable as cup-form of a I-connected, closed,
oriented, 6-dimensional manifold with torsion-free homology if and only if it
possesses a characteristic element.

Proof. 1If (r,H,w,t,F,p) is an admissible system of invariants,
and W, € H any integral lift of w, then we have p(x) = 4x3 + 6x2 W,
+ 3x W5(mod 24) Vx € H, i.e. the function lw,: H— Zis linear modulo 24,
and W, is therefore characteristic for F. Conversely, suppose W, € H is a
characteristic element for a cubic form F e S3HV; let w:= Wo(mod 2),
r:=0.
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By the main lemma we have to construct linear forms p, T € HY,
such that

) Wi=(p+24T) (Wo) (mod 43)
i) p(x) =4x3 + 6x2Wo + 3xWo(mod24) Vx € H.

The function Iy :H —Z, 1y (x) =4x3 + 6x>Wo + 3xW?o is linear
modulo 24 since W, is a characteristic element for F': we therefore choose
a linear form po, € HY with po(x) = Iy, (x) (mod 24) Vx € H. Substituting
x = Wo we find po(Wo) = 13 W (mod 24); but since W, is characteristic
we have W3 =0(mod2), thus po(W,) = W3 (mod 24). Write po(Wo)
= W3 + 24k for some k € Z.

case 1) k = 0(mod2): define p:= pg, T:= 0.

case 2) k= 1(mod2): we must find a linear form 7o, € HY with
To(Ws) = 1(mod?2); clearly this can be done if and only if W, is not
divisible by 2. If W, were divisible by 2, W, =2V, for some V, € H,
then 2po (Vo) = po(Wo) = Wi + 24k = 8V + 24k would give po(Vo)
=4V + 12k; then, using po (Vo) =4V + 6V Wo +3Ve Wo =4V73 (mod24)
we would find k£ = 0(mod 2), which is not the case by assumption.

This shows that Fe S?HY is realizable by a topological manifold
with Pontrjagin class po and non-vanishing triangulation obstruction
To:= To (mod 2). In order to realize F by a smooth manifold, one can
take p:= po + 2475, and 1:= 0.

REMARK 3. The topological counterpart of the existence of a charac-
teristic element for a given cubic form F € S3HV is the existence of a mod-2
Steenrod-algebra structure, which is a necessary condition for a ring to be a
cohomology ring.

The existence and the classification of characteristic elements for a given
cubic form is essentially a linear algebra problem over Z,,. To see this,
let F e S3HY be a fixed cubic form on a finitely generated free abelian
group H. Associated with F we have a linear map F’: H — S2H" sending
an element 4 € H to the bilinear form F'(h): H® H—>Z,(x,y) > x -y - h.
Let H:= H/»y. F e S3H" be the reductions of H and F modulo 2, and
let — : H— H be the natural epimorphism. The symmetric trilinear form F
on the Z,,-module H defines a natural symmetric bilinear form g7e S2H"
given by gr(x,y):=x-y - (x +y).

LEMMA 3. Fe S 3[_1 v admits characteristic elements if and only if qF
lies in the image of F'e Homgz(H,S*>H). The set of all characteristic
elements for F is a coset of the form W, + Ker (ﬁ’ D).
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Proof. W, is characteristic for F if and only if g7 = F1(Wy).

In terms of a Z-basis {e,...,e,} for H the condition gze Im(ﬁf)
translates into a simple rank condition over Z,,: the Z,,-rank of the
b x (bzl)-matrix A representing F! must be equal to the Z,,-rank of
the matrix 4 extended by the column (e; - €, (€;+ €,)) 1<i< <

EXAMPLE 3. Let H =7Ze, @ Ze, be free of rank 2, Fe S?H"Y given
by e} = a, ele, = b, ejel = c, el = d with a, b, ¢, d € Z. The rank condition
becomes

@b ib o
rk, c:d = rk, cfd 0
b ¢ b ¢ b+c

2.2 HOMOTOPY TYPES WITH A GIVEN COHOMOLOGY RING

Our next task is to describe the set of oriented homotopy types of
1-connected, closed, oriented, 6-dimensional manifolds with a fixed torsion-
free cohomology ring.

From Zubr’s classification theorem we know that in algebraic terms this
means the following: fix a non-negative integer 7o, a finitely generated free
abelian group H,, and a symmetric trilinear form Fo, € S3H'$ which admits
characteristic elements.

Let #(ro,Ho,Fo) be the set of Il-connected, closed, oriented,
6-dimensional manifolds X with b;(X) = 2r., such that there exists an iso-
morphism a:Ho, — H?*(X,Z) with a*Fy = F,. Denote by Aut(F,) the
subgroup of Z-automorphisms of H, which leave F, € S?H Y invariant;
Aut(F,) acts on pairs (w, [[]) € Ho X H% /sy /u,, in a natural way:

v, [11) := (v(w), (v =D)*[1]) .

Let awery)\Ho X H%/say/us, be the set of Aut(F,)-orbits.
A manifold X'in .# (ro, Ho, Fo) and an isomorphism a: H, = H?(X, Z)
with a*Fy = F, yields a well-defined Aut(F,)-orbit:

(0~ '(wy (X)), a*[p,(X) + 24T]) (modulo Aut(Fy)) ,

where 7 € H*(X,Z) is an arbitrary integral lifting of ©(X) € H*(X, Z,,).
The set of oriented homotopy types .# (ro, Ho, Fo)/~ of manifolds in
M (ro,Ho, Fo) can now be described in the following way:
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PROPOSITION 3. The assignment X — (0.~ (w5 (X)), 0* [p1(X) + 24T])
(modulo Aut(F,)) defines an injection.

I: J//(ro,Ho,Fo)/z —)Aut(FO)\HO X H\é/48H\6/UFO°

Proof. Suppose X and X' are manifolds in #(ro,Ho, Fo),
a:Ho > H?(X,Z) and o': Ho = H*(X', Z) isomorphisms with a*Fy = Fo
and (a')*Fyx. = Fo. X and X’ have the same image under [ iff there exists
an automorphism v € Aut(Fo) with ya ~!(wy(X)) = (a’) ~'w,(X’) and
(y " D*a*[py(X)+24T] = (0.)*[p1(X) +24T’']. Consider P:=a oy
oo~':H*X,Z)~ H*(X',Z); B is obviously an isomorphism with B* Fy.
= Fx,Bwa(X) = wo(X"), and B*[p(X') +24T’] = [p1(X) +24T]; but
this means that the systems of invariants associated with X and X’ are weakly
equivalent, and therefore X and X’ oriented homotopy equivalent.

A complete description of the set .#(ro, Ho, Fo)/~ 1.e. of the image
of I is only possible if the automorphism group Aut(Fs) is known; this can
be a serious problem, but we will see that the ‘general’ automorphism group
is finite (and usually small), so that the next proposition gives a reasonable
estimate for the number of elements in .# (ro, Ho, Fo)/~.

PROPOSITION 4. Fix ro € N, a finitely generated free abelian
group Ho, and a symmetric trilinear form F., e S’HY{ which admits
characteristic elements. Set b:=rk;Ho, s:= rkz/z(ﬁ &) and let
t:=rkgz,n("F) be the Z,,-rank of the Z,,-linear square map -fozf_lo
—~ HY% sending ueH, to u*eHY. Then M (ro,Ho,Fo)/~ con-
tains at most 22°-s-1 elements.

Proof. Fix any admissible system of invariants (ro, Ho, Wo, To, Fo, Do)
for a manifold in .# (ro, Ho, Fo). Given (ro, Ho, Fo), we know from the last
lemma that the possible elements w, form a coset of Ker (F ) in Ho, so that
there exist precisely 22-¢ such elements. It remains to count the classes
[/] € H5 /sy /v, » such that the Aut(Fo)-orbit of (wo,[po + 24T + 1])
lies in the image of 1.

To understand the latter condition we fix integral liftings Wo, € Ho, To
e H{ of wo and 71, satisfying the admissibility conditions

) W= (po+24Ts) (W) (mod 48)
i) po(x)=4x3+ 6x2Wo + 3xWh(mod24) Vx e H,.

Clearly the Aut(Fs)-orbit of (wo, [po + 24T, + []) lies in the image of I
if and only if
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1) W3 =(po+24Ts + 1) (Wo) (mod 48),
i) (po+1)(x) =4x3+ 6x2W, + 3xW3(mod24) Vx € Ho,

which is equivalent to /(W,) = 0(mod 48), and / = 0(mod 24 H%) because
of 1) and ii).

Now, by definition of the subgroup Ur, C HY/siyy we have the
following commutative diagram with exact rows and columns:

Ker(-£.) 0
| !
0-Ker@4 7)) © Holoy,  2° Ur. - 0
a !
0 — /28y = o/ asry - H$/umy— 0
l ! |
0 — Coker(‘r) — Hb/wmy/v,, — Hb/umy—0
l |
0 0

The number of elements [/] € Ho/smy/u,, to be counted coincides
therefore with the cardinality of the kernel of the map ev(wo): Coker(-7,)
— Z,, induced by evaluation in w.. This number is at most 22-7(2¢-/-1
if wo # 0 and ¢ # b).

COROLLARY 2. If the Z,,-rank s =rky,,(‘5) is maximal, then
M(ro, Ho, Fo)/~ contains at most one class.

Proof. Suppose 'ﬁoif—{o—’lrl\é is surjective; then F4:Ho— S2HY,
must have a trivial kernel, since Ax% = 0 for all x € Ho implies 4 = 0
if every linear form is a square. But this means s =1¢= b, so that
M (ro,Ho,Fo)/~ has at most one element.

EXAMPLE 4. Let Ho = Ze; @ Ze,, €] = a, eje; = b, eje; = ¢, e; = d.
If b = c(mod 2), and ad — bc = 1(mod 2), then .# (70, Ho, Fo)/~ contains
precisely one class for every ro, > 0.

it
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3. ALGEBRA AND ARITHMETIC OF CUBIC FORMS

Let H be a finitely generated free Z-module of rank b. In this section we
want to study algebraic and arithmetic properties of symmetric trilinear forms
F e S3HY on H which admit characteristic elements; ultimately we would
like to describe the classification of those forms under the action of the
general linear group GL(H), i.e. we like to investigate (part of) the
quotient S3HY/ g1 (my -

From what we have said in sections 1 and 2, this is clearly equivalent to
classifying the cohomology rings of 1-connected, closed, oriented,
6-dimensional manifolds without torsion, and with b, = b, b; = 0. Further-
more, up to finite indeterminancy, this is also equivalent to classifying the
homotopy types of these manifolds.

The proper setting for this arithmetic moduli problem can be found in
C. Seshadri’s paper [S]; here we investigate only its set-theoretic aspects.
Let H¢:= H ®7C be the complexification of H, and let S3H ¢/spm)
be the quotient of the reductive group SL (Hc¢). We obtain a natural map
c:S3HY/sp iy = S3H /sy, which allows us to break up the problem
into three parts: the description of the quotient S3 H (/5. (#.), the investiga-
tion of the fibers of ¢, and the study of the remaining Z,,-action on
S3HY/sr &y which is induced by the choice of an arbitrary automorphism
Ao € GL(H) of determinant detA, = — 1.

3.1 ALGEBRAIC PROPERTIES OF CUBIC FORMS

Let Hc = H®zC be as above, and denote by C[H]; the space of
homogeneous polynomials of degree 3 on Hc. There exists a linear polari-
zation operator Pol: C[H¢]; = S3H (, sending a homogeneous cubic poly-
nomial f € C[Hc]; to the symmetric trilinear form F = Pol(f) € S3HY.
which is related to f by the identity F(h, h, h) = 6f(h). We will usually
not distinguish between a cubic polynomial f and its associated form
F = Pol(f). On S3H there exists a polynomial function A:S3H} — C,
the discriminant, which is homogeneous of degree b - 22-1, and vanishes
in a form F if and only if the associated cubic hypersurface (f)o C P(Hc)
has a singular point; A is defined over Z and is clearly invariant under
the natural action of SL(H¢).

REMARK 4. Of course, a discriminant function A exists for forms

of arbitrary degree d; in the general case A is homogeneous of degree
b-(d-1)>"1on SYHY{.
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PROPOSITION 5.  Fix a symmetric trilinear form F e S*H¢ and an ele-
ment h e Hc\{0} with f(h)=0. The associated point <h> € P(H¢)
IS a singular point of the cubic hypersurface (f)o C P(Hc) if and only if
the linear form h*e H( is zero. The existence of at least one such point
Is equivalent to the vanishing of the discriminant.

Proof. From f(h+ tv) = f(h) + 3th?-v+ 3t2h - v? + 303 for every
veHc,teC we find %|of(h+tv) =3h2 v, ie. h?e HY defines the
differential of f in A.

REMARK 5. Q-rational points in (f). C P(H¢), and Q-rational singula-
rities of (f) o have geometric significance if the cubic f is defined by the cup-
form of a 6-manifold X. In fact, integral classes # € H?(X, Z) correspond
to homotopy classes of maps to P; such a map factors over P% C P if
and only if A3 = 0; if it factors over P C PZ, then clearly 42 = 0. The
converse will probably not always be true since, in general, the cohomology
ring does not determine the homotopy type.

In addition to the invariant discriminant A(f) of a polynomial f, we
will also need a fundamental covariant H,, the Hessian of f. Let
F = Pol(f) € S*H ¢ be the polarization of f € C[Hc];; the Hessian of f
can then be defined as the composition Hf:Hcﬂ S2H ¢ ¥ C, i.e. Hyis
the homogeneous polynomial function of degree b on H¢ given by
H;(h) = disc (F'(h)). In terms of linear coordinates &;, -+, &, on H one

finds the more familiar expression H, = det (6;‘?;] S )

PROPOSITION 6. Let Fe S*H(/ be a symmetric trilinear form. The
Hessian of F is identically zero if and only if there exists no element
h e Hc for which the map -+ h:Hc— H{ is an isomorphism.

Proof. H; is identically zero if and only if the symmetric bilinear
forms F!(h) € S?H (. are degenerate for every h € Hc. But this means that
none of the maps - h: Hec = H( is an isomorphism.

COROLLARY 3. Let Fe S*H({ be a form whose associated map
Ft':Hc— S*H{ is not injective. Then we have H;= 0.

Proof. Let k € Ker(F') be a non-zero element, and consider an
arbitrary element # € H¢. By definition of & we have F(k, h,v) = 0 for all
ve Hc,ie k-heH(is zero.
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REMARK 6. It is not difficult to show that F’ is not injectiye if afld
only if there exists a proper quotient H¢ of Hc, and a form Fe S3H{
whose pull-back to Hc is the given form F. This means that the Hessians of
cubic polynomials f € C[H¢]; which ‘do not depend on all variables’ are
automatically zero.

The converse holds for forms in b < 4 variables, but not in general [G/N].

3.2 THE GIT QUOTIENT S3H (/srue)

Let V:= S3H{ be the vector space of complex cubic forms. The
reductive group G:= SL(H¢) acts rationally on V, and therefore has a
finitely generated ring C[V]¢ of invariants [H]. The inclusion C[V]©¢
C C[V] induces a regular map m: V — V//; onto the affine variety V/g
with coordinate ring C[V']¢. It is well known that = is a categorical quotient,
which is G-closed and G-separating, so that V//s; parametrizes precisely the
closed G-orbits in V. Recall that a point v € V is semi-stable if o € G - v,
and that v is stable if G - v is closed in V and the isotropy group G, is
finite [M/F]. Denote the G-invariant, open subsets of semistable (stable)
points in V by Vss(V's).

The complement V\Vs = n-!(m(0)) consists of ‘Nullformen’, i.e.
forms for which all polynomial invariants vanish. The open subset of stable
points, which includes in particular all non-singular forms, has a geometric
quotient, given by the restricted map = | Vs: Vs — n(V*).

REMARK 7. Let Ao € GL(H) be a fixed automorphism of determinant
detAo = — 1, e.g. Ao = —idy if b is odd. A, induces a Z,,-action on
S3HV/SL(H) and on S3H ( /sy uc, for which the map c is equivariant.

Let G C GL(H¢) be the semi-direct product of SL (H¢) and Z,,
generated by Ao and SL(Hc). The invariant ring C[V] G has an important
topological interpretation: it consists of all polynomial invariants of complex

cohomology rings of 1-connected, closed, oriented 6-dimensional manifolds
with torsion-free homology.

EXAMPLE 5. Binary cubics (b = 2)

Choose linear coordinates X, Y on Hc, and write a cubic polynomial
S e C[X, Y]sin the form f = aoX? + 3a, X2Y + 3a,XY? + a;Y3.

We use ay, a1, ay, as as coordinates on S3HY, so that C[S3H (]
= Clao, ai, a;, a;]. The discriminant A(f) of f is a homogeneous
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polynomial of degree 4 in the coefficients ay, a;, a2, a4, explicitly given
by A(f) = aja; — 3ata; — 6asa,aza; + 4apal + 4a’a;.
The discriminant generates the ring of SL (H¢)-invariants,

C[S3H (]5:UHe) = C[A],

and it is easy to see that A is also Z,,-invariant. A cubic form f is stable if
and only if it is semistable, if and only if it is non-singular [N]. The cone of
nullforms © ~1(7(0)) is the affine hypersurface (A)o C S3HY; it has a nice
geometric interpretation in terms of the Hessian. The Hessian of the cubic f
is the quadratic form

H; = 62[(apa, — a?) X2+ (apa; — a;a)) XY + (aya; — a3) Y?] .

The set of forms f with vanishing Hessians H, form the affine cone over
the rational normal curve in P(S3H ¢); the hypersurface of nullforms is the
cone over the tangential scroll of this curve. There are 4 different types of
SL(Hc)-orbits in S3H (¢, represented by the normal forms XY (X + AY),
X?Y, X3, 0. The first type is stable, the others are nullforms, the orbits of X3
and 0 have vanishing Hessians.

EXAMPLE 6. Ternary cubics (b = 3)

The ring of SL(H¢)-invariants of ternary cubics is a weighted polynomial
ring in 2 variables, C[S3H ¢]5¢W¥c) = C[S, T] whose generators S, T have
been found by S. Aronhold [A]. S is a homogeneous polynomial of degree 4
in the coefficients of a cubic f, 7T is homogeneous of degree 6, both
polynomials are Z,,-invariant. For a cubic of the form f =aX?® + bY?3
+cZ*+ 6dXYZ,S and T are given by S =4d(d?— abc) and T = 8d°
+ 20abc(d?® — abc) respectively [P]. The general formulae, which take two
pages to write down, can be found in the book of Sturmfels [St]. The
discriminant of a form f is homogeneous of degree 12 in the coefficients
of f; in terms of Aronhold’s invariants S, 7 it is simply given by
A = S3 — T?. We obtain the following overall picture: The GIT quotient for
ternary cubics is an affine plane A? with coordinates S, 7. The complement
A2\(A)o, of the discriminant curve is the geometric quotient of stable
cubics. The m-fibers over a point (S, 7) # (0, 0) on the discriminant curve
(A) o consist of 3 types of SL(Hc)-orbits: nodal cubics with normal form
X3+ Y3+ 60aXYZ, reducible cubics formed by a smooth conic and a
transversal line (normal form: X3 + 60.XYZ), and cubics consisting of three
lines in general position (normal form: 6a.XYZ); these cubics are properly
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semi-stable for a # 0 with Aronhold invariants S = 4a*, T = 8a®. The fiber
of m over 0 contains 6 orbits with normal forms

Y:Z - X3, Y(X?-YZ),XY(X+Y), XY, X,

and 0, of which the last 4 types have vanishing Hessians. For more details we
refer to H. Kraft’s book [Kr].

REMARK 8. The natural C*-action f — A - f on cubic forms induces a
weighted action on the GIT quotient S*H (/s ey, 2 (S, T) = (A*S, A6 T).
The associated weighted projective space P!(4,6) with homogeneous
coordinates < S, T> is the good quotient for semi-stable plane cubic
curves. Its affine part P!\ (A), is the moduli space of genus-1 curves. The
PGL(Hc)-invariant J:= L gives the J-invariant of the corresponding

A
curve.

3.3 ARITHMETICAL ASPECTS

Let ¢: S3HY /sy = S*H(/spy be the map which associates to the
SL(H)-orbit <F> of a symmetric trilinear form F e S3H" the SL(H¢)-
orbit < F>¢ of its complexification. The c-fiber over <F > can be
identified with the subset (SL(Hc)  FnS3HY)/ st of S3HY/spm -
C. Jordan has shown that these subsets are finite provided the cubic form
f € C[Hc]; associated to F has a non-vanishing discriminant [J1]. Jordan’s
original proof, which is only two pages long, is somewhat hard to follow. The
following theorem of A. Borel and Harish-Chandra provides, however, a vast
generalization of Jordan’s finiteness result:

THEOREM 3 (Borel/Harish-Chandra). Let G be a reductive Q-group,
I' C G an arithmetic subgroup, &:G— GL(V) a Q-morphism, and
L CV a I'-invariant sublattice of Vqo. If veV has a closed G-orbit
in V, then G,n L/r Iis a finite set.

Proof. [B].

COROLLARY 4. Let Fe S’HY be a symmetric trilinear form on H.
If the SL(Hc)-orbit of F in S*H{ is closed, then the fiber
c U (<F>c) over <F>c s finite.

To check whether a SL(Hc¢)-orbit SL(H¢) - F is closed in S3H(, one
has a generalization of the Hilbert-criterion [Kr]: SL(H¢) - F is closed in
S3H{ if and only if for every l-parameter subgroup A: C* — SL(H(), for
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which lim,_ A(¢) - F exists in S3H(, this limit is already contained in
SL(Hc) + F. A sufficient condition for SL(Hc) - F to be closed follows
from another result of C. Jordan [J2]:

THEOREM 4 (Jordan). Let f e€ C[Hc¢ls be a homogeneous polynomial
of degree d > 3. If its discriminant A(f) is non-zero, then [f has
a finite isotropy group SL(Hc);.

COROLLARY 5. Let Fe S*HY be a form whose associated cubic
polynomial f € C[H¢cls has A(f)#0. Then SL(Hc)-F is closed
in S’H(.

Proof. Standard arguments, cf. [Bo].

REMARK 9. Closedness of the SL(Hc)-orbit of F is only a sufficient
condition for the finiteness of the fiber ¢~ !(<F>¢). There exist other
finiteness theorems for special types of forms, like e.g. forms which
decompose into linear factors.

Some of these results are surveyed in Volume III of L. Dickson’s book [D].

We say that two forms F,F’ e S3HY belong to the same (proper)
equivalence class if they lie in the same (SL(H)-) GL(H)-orbit. The group
Z,, = GL(H)/sp@) acts on the set S?HV/g, ) of proper classes, and the
quotient becomes the orbit space S*H"Y/s1 -

The Z,,-action is not free in general, but for finiteness properties this
plays no role.

EXAMPLE 7. Binary cubics

Let H be a free Z-module of rank b = 2. There exist only finitely many
classes of symmetric trilinear forms F e S3®HY with a given non-zero
discriminant A. Of course, A must be integral, and a square modulo 4, in order
to be realizable by an integral form. For some small values of A # 0 the
number of classes is known. Results in this direction go back to a paper
by F. Arndt [A]; his tables have been rearranged by A. Cayley [Cay]. It should
certainly be possible to go much further using modern computers.

ExaMPLE 8. Ternary cubics

Let H be a free Z-module of rank 3 with coordinates X, Y, Z. The cubic
polynomials with closed SL(Hc)-orbits are the non-singular cubics, and
the polynomials in the orbits of 6aXYZ for all a € C.
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The number of integral classes in these orbits is therefore finite. We have,
however, an even stronger finiteness theorem for stable ternary cubics:

PROPOSITION 7. Let H be a free Z-module of rank 3. There exist only
finitely many classes of symmetric trilinear forms F € S3HY with a fixed
discriminant A + 0.

Proof. In terms of Arnhold’s invariants S and 7, A is given by
A = S3 — T2. By a theorem of C. Siegel [Si], the diophantine equation
S3 — T2 = A has only finitely many integral solution (S, T') for any integer
A # 0. For each of these solutions the corresponding point in S3H ¢/ sz mc)
lies outside of the discriminant curve, so that the m-fiber over it is a closed
SL(H¢c)-orbit. The finiteness of the class number then follows from the
Borel/Harish-Chandra theorem.

A famous special case of Siegel’s theorem is Bachet’s equation
S3 — T2 = 2; it has only the two obvious solutions (3, £ 5).

REMARK 10. To get finiteness results for ternary cubic forms it is not
sufficient to fix the J-invariant (instead of the discriminant): The forms
fm=X3+XZ*+ Z¥+ mY?Z, m € Z\{0}, all have the same J-invariant,
but they are not equivalent, even over Q, since they have bad reduction at
different primes p | m.

4. INVARIANTS OF COMPLEX 3-FOLDS

In this section we begin to investigate the topology of 1-connected,
compact, complex 3-folds. After a brief discussion of the possible systems of
Chern numbers of almost complex 6-manifolds, we study the behaviour of
the topological invariants of complex 3-folds under certain standard
constructions, like e.g. branched coverings, or blow-ups of points and curves.
Then we describe some interesting examples of 1-connected, non-Kéahlerian
3-folds, including a new construction method which generalizes the Calabi-
Eckmann manifolds. These examples will be needed in the next section in order
to realize complex types of cubic forms as cup-forms of complex 3-folds.

4.1 CHERN NUMBERS OF ALMOST COMPLEX STRUCTURES

Let X be a closed, oriented, 6-dimensional differentiable manifold. The
tangent bundle of X is induced by a classifying map ?x: X — BSO(6) which
is unique up to homotopy. By an almost complex structure on X we mean
the homotopy class [fx] of a lifting y: X = BU(3) of tx to BU(3).
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PROPOSITION 8. Every closed, oriented, 6-dimensional C>-manifold X
without 2-torsion in H?3(X,Z) admits an almost complex structure. There
Is a 1-1 correspondence between almost complex structures on X and integral
lifts WeH*X,Z) of wy(X). The Chern classes c¢; of the almost
complex manifold (X, W) are given by ¢, =W, ¢, = %(W2 — pi1(X)).

Proof (cf. [W]). The obstructions against lifting 7x to BU(3) lie
in the cohomology groups H*'(X,n:(SO6)/y@),i=0,1,...,5.
Since SO(6)/ys = P* has only one nontrivial homotopy group
7,(SO(6)/y@3)) = Z in dimensions i < 5, there is in fact only one obstruction
o(ty) € H3(X,Z), and this obstruction can be identified with the image
of w,(X) under the Bockstein homomorphism p: H>(X,Z,,) > H*(X, Z).
Since H?3(X,Z) has no 2-torsion by assumption, Bw,(X) must be equal to
zero, so that X has at least one almost complex structure [fy] € [X, BUQB)].
Standard homotopy arguments show now that the map, which assigns to an
almost complex structure [7x] its first Chern class #%c¢;, induces a 1-1 corres-
pondence between integral lifts W e H?(X,Z) of w,(X) and homotopy
classes of liftings of [fx] to BU(3).

The second Chern class ¢, of the almost complex manifold (X, W) is
determined by W? — 2¢, = p,(X).

The Chern numbers c? ,C1Cy,c3 of an almost complex manifold X
of real dimension 6 satisfy the following congruences: ¢; = 0(mod 2),
cic; = 0(mod 24), c¢; = 0(mod 2). Conversely, given a triple (a, b,c) of
integers @ = 0(mod 2), b = 0(mod 24), and c = 0(mod2), there always
exists an almost complex manifold X of dimension 6 with Chern numbers
ci=a,cic;=b, c3 = c.

It 1s not totally clear, however, that one can find a connected manifold X
with prescribed Chern numbers [H1].

PROPOSITION 9.  Every triple (a, b, c) € 93 satisfying a = 0(mod 2),
b = 0(mod 24), ¢ = 0(mod 2) is realizable as the Chern numbers of an almost
complex 6-manifold.

Proof. Consider the complete intersection V(f, g) C P> defined by the
polynomials f(z) = z¢ + 2} + 225 — 25 — 2, — 225, and g(z) =z + 2°
+ 275 — 23 — 24 — 222 [Wel. V(f, g) is a singular 3-fold with 90 ordinary
double points, and every small resolution V of these nodes is a (not necessarily
projective) Calabi-Yau 3-fold with Euler number 4. Suppose now that a
prescribed triple (a,b,c) € Z®3 is realized by a possibly disconnected
almost complex manifold X =II,_,X;. If we form the connected sum

!
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X' of the X;, we obtain a connected almost complex manifold X’ with
Chern numbers ¢3 = g, ¢;c, = b, but with ¢; = ¢ — 2(|I] = 1).

If |7| > 1 take the connected sum of X’ with |I| — 1 copies of the
complex manifold V. Since V is Calabi-Yau, the Chern numbers cf and c¢;c;
remain unchanged, whereas the Euler number of X",/ _ V' becomes c¢; = c.

REMARK 11. The above argument has been suggested by F. Hirzebruch
after talk at the MPI, in which one of us had sketched a less geometric proof
of the proposition.

There is another question which is related to the result above: Fix a closed,
oriented, 6-dimensional differentiable manifold X. Which pairs (a, b) of
integers with ¢ = 0(mod2) and b = 0(mod 24) occur as Chern numbers
c? and c¢,c, of almost complex structures on X, and in how many ways?

For manifolds with b,(X) = 1 the Chern numbers determine the almost
complex structure. For manifolds with », > 1 this is no longer true. It is
possible to construct infinitely many distinct almost complex structures with
the same Chern numbers on a hypersurface of bidegree (3,3) in P2 X P2.

An almost complex structure [fx] on a differentiable 6-manifold X is said
to be integrable if Iy is homotopic to the classifying map of a complex 3-fold.
We are not aware of any example of an almost complex 6-manifold which is
known not be integrable. On the other hand, it is also unknown whether or
not the Chern numbers ¢, ¢;c, of integrable almost complex manifold are
topological invariants. The following remark might therefore be of some
nterest:

PROPOSITION 10. If the Chern numbers of complex 3-folds are topo-
logical invariants, then there exist almost complex structures which are not
integrable.

Proof. Consider a closed, oriented differentiable 6-manifold X without
2-torsion in H3(X, Z). Fix any almost complex structure on X with first
Chern class W e H?(X, Z).

Every element x € H?(X, Z) defines a new almost complex structure
on X with first Chern class W + 2x, and it is easy to see that these two
almost complex structures have the same Chern numbers if and only if x
satisfies the equations p;(X)-x =0, and 3W2-x+ 6W - x2 + 4x3 = 0.

Suppose now (X, W) is integrable, p,(X) # 0, and choose x e H?*(X,Z)
such that p,;(X) - x # 0. Then clearly, either none of the almost complex

manifolds (X, W + 2x) is integrable, or the Chern numbers of complex 3-folds
are not topologically invariant.
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REMARK 12. It is very likely that there exist non-integrable almost
complex structures on manifolds X as above, but probably this is hard to
prove. It is also not unlikely that the Chern numbers of complex 3-folds are
not topological invariants. A possible way to check this would be, to run a
computer search for 3-folds given by certain standard constructions.

4.2 STANDARD CONSTRUCTIONS

For later use we investigate the topological invariants of complex 3-folds
which can be obtained by certain simple standard constructions like complete
intersections, simple cyclic coverings, blow-ups of points and curves, and
projective bundles.

PrOPOSITION 11 (Libgober/Wood). Let X C P3**" be a smooth
complete intersection of multidegree d = (d,, ...,d,). Choose a normalized
basis ee H*(X,Z), and let ce€ H*(X,Z) be defined by ¢e(e) = 1.
Then the invariants of X are:

Fx(xe) = dx® where d=1],_,

pX)y=d@d+r—Y,_,d)e, and

bi(X)=4—-4[4+r—%,_,d)*-3@4+r-3,
+2(4+r— Y, _,d)].

Proof. [L/W].

r

di,w,(X)=@G+r- Y%,

i:

]di)e’

r

_d) @G +r= Y, d))

PROPOSITION 12. Let X be a smooth, I-connected, complex projective
3-fold, and let n:X' — X beasimple cyclic covering of degree d branched
along a non-singular ample divisor B €|L®? |. X’ is smooth, projective,
I-connected, and nn*:H?*(X,Z)—> H*(X',Z) is an isomorphism. The
invariants of X and X' are related by the formulae:

(¥ Fyr = dFy, wa(X7) — T wy(X) = (d — Dr*er(L),
PrX) — w*py(X) = (1 —d) (1 + d)n*ey(L)?, and
by(X) = dby(X) + (d — 1) (b2(B) — 2b:(X)) .

Proof. X'is clearly smooth and projective. By a theorem of M. Cornalba
n: X’ — X is a 3-equivalence, i.e. m4: @, (X") = m;(X) is bijective for i < 2,
and surjective for i = 3[Co]. X’ is therefore 1-connected, and n*: H*(X, Z)
— H2(X',Z) is an isomorphism. The relation between Fy. and Fyx is
obvious, whereas the formula for b;(X’) follows from =,;(B) = {1} and
standard properties of Euler numbers.
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In order to calculate w,(X’') and p;(X’) we compute the Chern
classes of X':c;(X') - n*c;(X) =0 -d)n*c; (L), c2(X") — n*c,(X)
=1 -d)yn*[e;(X)ei(L) — dei(L)?].

The latter formulae follow from the description of X’ as a divisor in
the total space of the line bundle L.

EXAMPLE 9. Let X be a d-fold, simple cyclic covering of P3 branched
along a smooth surface B C P3 of degree dl,/>1. Let e e H*(X,Z)
correspond to the preimage of a plane in P3. The invariants of X are
then given by:

Fx(xe)=dx3, w,(X) =@+ U -d)e,pi(X)=d[4+1 -d)A +d)I?]e
(e(e)=1),b5(X) = (d—1)(d?I* - 4d] + 6)dI .

PROPOSITION 13. Let cs:)A( — X be the blow-up of a complex 3-fold
X ina point, and let e € H?>(X,Z) be the class of the exceptional divisor.
The invariants of X and X are related by the following formulae:
F3(c*h+xe)=Fx(h) +x? ¥V he HX(X,Z),x € Z, w,(X) = 0% wy(X),
P1(X) =c*pi1(X) + 4(e? —c*ci(X) - e), b3(X) = b3(X) .

Prvof. Standard arguments, see [G/H]. The Chern classes are related
by ¢;(X) = 6*ci(X) — 2e,c,(X) = 6*c,(X).

PROPOSITION 14. Let o:X— X be the blow-up of a complex 3-fold
X along a smooth curve C of genus g, and let ec H 2(X Z) be the
class of the exceptional divisor. The invariants of X and X are

related by:
Fi(o*h+xe) = Fx(h) —3h - Cx?*— degN¢c,xx* ¥V he H*(X, Z),
x € Z,wy(X) = 6*wy(X) + e, py(X) = 6*py (X) + (e — 26*C),
by(X) = b5 (X) + 2g .

_ Proof [G/H]. The Chern classes are given by cl(X) = oc*c(X)
~ ¢, cz(X) = 6*(c2(X)+ C) — 6*c,;(X) - e.

PROPOSITION 15.  Let E be a holomorphic vector bundle of rank 2 with
Chern classes c¢;(E),i= 1,2 overa I- connected, compact complex surface

Y, and let n:P(E)—>Y be the projective bundle of lines in the fibers
of E. The cup-form of P(E) is given by

Fey(h+x8) = x[Bh%) = Bei(E) - h)x + (1 (E)? — cy(E))x?] ,
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where & = c,(Zp (1), he H*(Y,Z), and xe€Z. The other topo-
logical invariants of P(E) are:

w2 (P(E)) = n*(w2(Y) + 1 (E)), pi (E))
= n*[c1(Y)?2 = 2¢:(Y) + 1 (E)? = 4c2(E)], b3(P(E)) = 0.

Proof. The Leray-Hirsch theorem identifies the cohomology ring
H*(P(E), Z) with the ring H*(Y, Z) [E]/ <t2+ c,(E) - £ + c,(E)> 5 this determines
the cup-form. In order to calculate the characteristic classes one uses the exact
sequence 0 = Zppy = A*E® Opiy(1) = Tppy = n* Ty~ 0. b3(P(E)) =0
follows from b;(Y) = 0 and the Leray-Hirsch theorem.

4.3 EXAMPLES OF 1-CONNECTED NON-KAHLERIAN 3-FOLDS

Recall that the Hessian of a symmetric trilinear form F e S3HY

on a free Z-module H of finite rank was defined as the composition
disc

HF:HE; S2HY = Z. In terms of coordinates &;,...,§, on H it is given

by the determinant det (affggj)’ where f € C[Hc¢]; is the homogeneous

cubic polynomial associated with F.

PROPOSITION 16. Let F be a symmetric trilinear form whose Hessian
vanishes identically. Then F is not realizable as cup-form of a Kdihlerian
3-fold.

Proof. Let X be a complex 3-fold with a Kédhler metric g. The Kéahler
class [w,] € H*(X,R) defines a multiplication map - [w,]: H?*(X,R)
— H4(X,R), which is an isomorphism by the Hard Lefschetz Theorem
[G/H]. In section 3.1 we have seen that this is not possible if the Hessian
of the cup-form vanishes.

COROLLARY 6. Cubic forms f € C[Hcl; which depend on strictly less
than b = rk;,H variables are not realizable as cup-forms of Kdhlerian
3-folds with b, = b.

By considering the Hessian of a cup-form over the reals one obtains further
conditions.

DEFINITION 4. Let F e S*HY be a symmetric trilinear form on a free
Z-module of rank b.

The Hesse cone of F is the subset 2¢r C Hg defined by
Hp:={h e Hgl|(~1)bdet(F'(h)) <0}.
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The index cone Jr of F is the subset Jr:={h¢€ #r| F'(h) € S?Hy
has signature (1, —1,..., — 1)}.

Clearly /ris an open subcone of 7 which coincides with o7 iff b < 2.

THEOREM 5. Let Fye S3H?(X,Z)" be the cup-form of a smooth
projective 3-fold with h%2(X)=0. Then Fx has a non-empty index
cone.

Proof. Let h € H2(X, Z) be the dual class of a hyperplane section Y in
some projective embedding. The inclusion i: Y & X induces a mono-
morphism i*: H2(X,Z) = H*(Y,Z) by the weak Lefschetz theorem. The
symmetric bilinear form F (k) € S2H?*(X, Z)" is simply the pull-back of the
cup-form of Y under the inclusion i*; it is therefore non-degenerate by the
Hard Lefschetz theorem [L]. Applying the Hodge index theorem to Y we see
that the real bilinear form F% (k) € S2H?(X, R)Y must have one positive
and b — 1 negative eigenvalues. In other words: # € I, .

REMARK 13. This result has two applications: it provides topological
‘upper bounds’ for the ample cone of a projective 3-fold with A%2 = 0,
and if gives further restrictions on symmetric trilinear forms to be realizable
as cup-forms of projective 3-folds with A%2 = 0 if b > 4.

These applications will be discussed in section 5.

We will now describe examples of 1-connected, non-Kihlerian, complex
3-folds and determine their topological structure.

ExXAMPLE 10 (Calabi-Eckmann). E. Calabi and B. Eckmann have
defined complex structures X., depending on a parameter t, on the product
S3 x S§3[C/E]. Their manifolds are principal fiber bundles over P! x P!
whose  fiber and  structure group is the elliptic  curve
E. =C/z¢z2:,Im(7) > 0.

The Calabi-Eckmann manifolds are homogeneous, non-Kihlerian 3-folds
of algebraic dimension 2.

EXAMPLE 11 (Maeda). H. Maeda has generalized the Calabi-Eckmann
construction. He constructed fiber bundles X! over Hirzebruch surfaces
F,,n > 0, whose fiber and structure group are an elliptic curve E, and
Aut(E;) respectively [M]. X. is again diffeomorphic to S3 x S3, and
therefore non-Kéahlerian. Maeda’s manifolds X! are homogeneous if and
only if n = 0 in which case they are Calabi-Eckmann 3-folds.
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The Calabi-Eckmann construction can also be generalized in the following
way:

Let S2 X S* be the non-trivial S4-bundle over S2, i.e. S2 X S* is the
unique 1-connected, closed, oriented, differentiable 6-manifold with
H,(S*%x S*Z)=7Z and b; =0, whose cup-form and Pontrjagin class
vanish, but whose Stiefel-Whitney class w, is non-zero.

THEOREM 6. For any integer b >0 there exist compact complex
3-folds X,, and X, if b=>=1, which are homeomorphic to
#bSZXS4#b+1S3XS3, and SZ§<84#b_1S2XS4#b+IS3><Sg.

Proof. Let Y be a l-connected, compact complex surface with
p.(Y) =0 and b,(Y) > 2, and let E = C/r be the elliptic curve associated
to the lattice I' C C. We want to construct the required 3-folds as total
spaces of principal E-bundles over Y. Let c: H,(Y,Z) — I" be an arbitrary
epimorphism. The corresponding cohomology class ¢ € H2(Y,I") defines a
topological principal bundle over Y with fiber and structure group £ = C/r
as follows immediately from the identification of the classifying space
BE = K(T, 2).

Let 7y (E) be the sheaf of germs of holomorphic maps from Y to £. We
have a short exact sequence 0 > I' = Zy — Zy(E) — 0 and a corresponding
exact cohomology sequence

— HU(Y, &y) = H'(Y, Oy(E)) > HX(Y,T) = HX(Y, #y) =

By our assumptions & is an isomorphism, so that every topological prin-
cipal E-bundle admits a holomorphic structure. Let X be the total space
of such a bundle corresponding to a surjective map c: H,(Y,Z) = I'. The
homotopy sequence of the fibration p: X — Y yields the sequence

0 - 1,(X) 3 m,(Y) = () = 71 (X) S m,(Y) > 0.

Since Y is l-connected, m,(Y) can be identified with H,(Y,Z), and
then the boundary map =,(Y)— m;(E) becomes the characteristic map
c: H,(Y,Z)— T of the bur;dle. This implies 7, (X) = {1}, whereas H,(X, Z)
is given by: 0 — H,(X,Z) = H,(Y,Z) > T — 0.

In particular, H,(X,Z) is free as a submodule of H,(Y,Z), and by
dualizing the last sequence we obtain an identification (via p*)

H*(X,Z)=H*(Y,Z)/r .
The cup-form Fy of X is therefore trivial. In order to calculate p,(X)
and w,(X), we use the exact sequence of tangent sheaves: 0 = Tx,y = Tx
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— p*Ty— 0. Since T,y is a trivial bundle, the characteristic classes
of X are simply the pullbacks of the corresponding classes of Y. But the
map p*:H*(Y,Z)—~ H*(X,Z) is zero, since <p*(g)u p*(a), [X]>
= <guUa,px[X]> =0 for all classes € € H*(Y,Z), and o € H?(Y, Z).

Thus p,(X) =0, and w,(X) is the residue of w,(Y) e H*(Y,Z,,)
modulo I'V/,pv.

The Euler characteristic of X is zero, so that from b,(X) = b,(Y) — 2
we find b3 (X) = 2(b,(Y) — 1). The system of invariants associated to the
manifold X is therefore given by

(bZ(Y) - 1: HZ(Y, Z)/rv, WZ(Y) (mOdrv/ZFV)’ 0’ Oa 0) ’
i.e. X is diffeomorphic to
o, -28% X S*p,ry-183 X S3if wy(Y) e I'V/orv

and to S2>~<S4#bz(y)‘352x S4#bz(y)_1S3XS3 if bz(Y)}S, and
wo(Y)eI'v/orv.

EXAMPLE 12 (Kato). In the two papers [K1], [K2] M. Kato studies the
class of compact, complex 3-folds X containing smooth rational curves with
neighborhoods biholomorphic to those of projective lines in P3. On this class
of 3-folds, called class L, he defines a semi-group structure + with neutral
element P3,

Kato’s connecting operation + is defined by removing ‘lines’ L; C X
from 3-folds X;,i = 1,2, and by identifying the complements X;\L; along
open sets U;\L; obtained from suitable neighborhoods U; C X;.

Starting with a certain elliptic fiber space X,; over the blow-up
of P! X P! in a point, he constructs a sequence of 3-folds X,:= X;
+ X,-1,n>=2. The 3-folds X, are 1-connected spin-manifolds with
H,(X,,Z) = Z. Their cup-forms Fy , and their Pontrjagin classes
pi(X,) are in terms of a (normalized) generator e, € H2(X,,Z) and its
dual class &, € H*(X,,Z) given by Fx (xe,) = (n— 1)x3 and p,(X,)
= 4(n — )¢, (g,(e,) = 1). The third Betti-number of X, is 4n.

In particular, X, is diffeomorphic to S2 x S*#,S% x S3, and X, is
diffeomorphic to P3#,S83 x S3. It is interesting to note that the Chern-
numbers c?, cic, of the X, are cf = 64(1 — n), c;c; = 24(1 — n), i.e. they
satisfy 8c,c, = 3cf. For projective manifolds of general type this equality is
characteristic for ball quotients [Y].
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EXAMPLE 13 (Twistor spaces). Let p:Z — M be the twistor fibration of
a closed, oriented Riemannian 4-manifold (M, g). Z carries a natural almost
complex structure which is integrable if and only if g is self-dual [A/H/S].

Examples of 1-connected 4-manifolds which admit self-dual structures are
S4,%,P2 and K3-surfaces.

The total spaces of their twistor fibrations are 1-connected complex 3-folds
which may be Moishezon for S* and § ,P2? [C], but which are usually
non-Kahler [Hi]. We leave it to the reader to calculate the topological
invariants of these 3-folds. There is an interesting relation between Twistor
spaces of connected sums and Kato’s connection operation + for class L
manifolds [K2], [D/F].

EXAMPLE 14 (Oguiso). In a recent preprint [O1] K. Oguiso constructs
examples of 1-connected, Moishezon Calabi-Yau 3-folds with very interesting
cup-forms. He proves that for every integer d > 1 there exists a smooth
complete intersection X of type (2, 4) in P> which contains a non-singular
rational curve C, of degree d with normal bundle Nc,x, = Zc,(—1)®2,

The 3-fold X, can now be flopped along C,, i.e. C, can be blown up
to P(Nc¢,/x,) = P! x P!, and then ‘blown down in the other direction’.
The resulting 3-fold X, is a 1-connected Moishezon manifold with trivial
canonical bundle and cup-form Fy, given by Fx, (xe;) = (d? — 8)x3. Here
e, € H*(X,,7Z) is the normalized generator corresponding to the strict
transform of the negative of a hyperplane section of X. The Pontrjagin
class of X, is p,(Xy) = (112 + 4d)e, where ¢, € H*(X,,Z) denotes the
generator with €,(e;) = 1. Since the Euler-number does not change under a
flop we have b;(X,) = 180 for every d.

5. COMPLEX 3-FOLDS WITH SMALL b,

In this section we investigate the following natural problem: Which
cubic forms can be realized as cup-forms of compact complex 3-folds? For
small b, something can be said: Any core of a 1-connected, closed, oriented
differentiable 6-manifold with H, (X, Z) = Z is homotopy equivalent to the
core of a l-connected complex 3-fold. In the case b, = 2, at least every
discriminant A is realizable by a complex manifold. If b, = 3 we can realize
all types of complex cubics with one exception, the union of a smooth conic
and a tangent line. In addition to these realization results we prove a finiteness
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theorem for 3-folds with b, =1, w, # 0, and we give examples which
show that the condition /r, # @ for the index cone of a projective 3-fold
with #%2 = 0 is non-trivial in general.

5.1 3-FOLDS WITH b, = 1

Recall from section 1.1 that every closed, oriented, 1-connected differen-
tiable 6-manifold X with torsion-free homology has a connected sum
decomposition X = X.%,S53 x S3 where r = (ngﬁ), which 1is unique
up to orientation preserving diffeomorphisms; the manifold X, with
b;(Xo) = 0 is the core of X.

THEOREM 6. Let X, be a I-connected, closed, oriented differentiable
6-manifold with H,(Xo.,Z)=12Z and b3(Xo)=0. There exists a
compact complex 3-fold X whose core is orientation preservingly homotopy
equivalent to Xo.

Proof. The oriented homotopy type of X, is determined by the inva-
riants d, w,, and p,(mod 48); more precisely: for d = 1(mod 2) there is a
single homotopy type whereas for d = 0(mod 2) there are three; one of these
3 types has w, # 0, the other two are spin, they are distinguished by
p1 = 4d(mod 48), p, = 4d + 24(mod 48) respectively. In order to realize
these homotopy types as cores of complex 3-folds we first look at simple
cyclic coverings of P3. Given a positive integer d, let m: X — P3 be
a simple cyclic covering of P3? branched along a smooth surface B
of degree d/. Then X has the correct ‘degree’ d and the characteristic
classes wo, =(d—1)/(mod2), and p, =4d+ (1 —d)(1 +d)dI[?, see 4.2.
For odd d there is nothing to prove. For even d we can realize w, = 0
or w, # 0 by choosing / = 0(mod 2) or / = 1(mod 2). Taking / = 0(mod 4)
gives w, = 0, p; = 4d(mod 48), taking / = 2(mod4) yields w, = 0, and
p1 = 4d + 24(mod 48). It remains to treat the special case d = 0, where
the 3 homotopy types are given by w, # 0, by w, =0, p, = 0(mod 16),
and by w, = 0, p, = 8(mod 16). The first two homotopy types are realizable
as cores of elliptic fiber bundles over the projective plane blown up in
two points.

The third homotopy type is realized by the core of Oguiso’s Calabi-Yau
3-fold X, with vanishing cup-form and p,(X,) = 120s,.

The result just proven suggests a natural question: given a manifold X,
as above, which (even) integers b; > 0 occur as the third Betti numbers of
complex 3-folds X whose core is homotopy equivalent to X ?
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There will certainly be some gaps for algebraic 3-folds. In order to show
this, we prove the following finiteness theorem for families of Ké&hler
structures:

THEOREM 7. Fix a positive constant c. There exist only finitely many
Jamilies of 1-connected, smooth projective 3-folds X with H,(X,Z) = Z
wy(X) #0, and with b;(X) < c

- Proof. Let X be a smooth projective 3-fold with H,(X,Z) = {0},
H,(X,Z) =Z, and with w,(X) # 0. Clearly Pic(X) = H?*(X, Z), and we
can choose a basis e € H?(X,Z) corresponding to the ample generator
of Pic(X).

Let ¢;(X) = cie,c,(X) = c,&€ where e? = deg,e(e) = 1. If ¢, is positive,
then X is Fano, and there are only finitely many possibilities [Mu]. The
case ¢; = 0 is excluded, so that we are left with ¢; < 0, i.e. the canonical
bundle of X is ample.

The Riemann-Roch formula (X, Zx)=1—- h3(X, Ox) = i C1Cy
shows that the set of possible Chern numbers ¢, ¢, is bounded from below:
24(1 — ¢) € ¢;c,. Using Yau’s inequality 8c¢;(X)c,(X) < 3¢;(X)3? we find
that d | c, |3 < 64(c — 1), i.e. the degree d and the order of divisibility | ¢, | of
c;(X) is bounded. Now Kollar’s finiteness theorem [Ko2] yields the
assertion.

ExaMPLE 15. Let X be a 1-connected, smooth projective 3-fold with
H,(X,Z) =17 and w,(X) # 0. If b3(X) <2, then A3(X, 7x) <1 and X
must be Fano of index 1 or 3. For b;(X) = 4 we have that X is either Fano,
or h3(X, £x) = 2 and X is of general type with d|c; |3 <

Note that the assumption w, # 0 was only used to exclude Calabi-Yau
3-folds.

5.2 3-FOLDS WITH b, = 2

Let X be a 1l-connected, closed, oriented, 6-dimensional differentiable
manifold with H,(X, Z) =

We choose a basis e;, e, for H2(X,Z) and set a, = e';',al == efez,az
= eleg, as; = ei; the cubic polynomial f associated to the cup-form
of X is then given by f =a¢X®+ 3a, X?Y + 3a,XY? + a;Y3. The
discriminant of f is by definition A(f) = aga3 3a — 6apa,a,a;
+ 4a0a§ + 4a’ 1a3; up to a factor it is simply the dlscrlmmant of the
Hessian H; = 62[(apa, — a}) X2 + (apas — a1a,) XY + (a,a3 — a)Y?] of
FiA(f) = (agas — a,a,)? — 4(apa, — at) (a,as — az).
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The last identity shows that A(f) is always a square modulo 4, i.e.
A(f) =0, 1(mod 4).

PROPOSITION 17. Every integer A =0, 1(mod4) is realizable as discri-
minant of a compact complex 3-fold.

Proof. Consider the projectivization X = Pp2(E) of a holomorphic
rank-2 vector bundle E over the plane. In terms of the standard basis
of HX(X,Z)(e; = n*h, e, = ¢,(£p (1)) the cubic polynomial associated
to X is given by f = (¢} — ;) X3 4+ 3(—¢;) X2Y + 3XY?, where ¢; = ¢;(E)
are the Chern classes of E considered as integers. Inserting this into the
discriminant formula yields A(f) = cf — 4¢,. Since every pair ¢y, ¢, OCcurs
as pair of Chern classes of a holomorphic rank-2 bundle on P2, every
integer A = 0, 1(mod4) can be realized as discriminant of a holomorphic
projective bundle Pp2 (F).

Recall from section 3.2 that there are 4 different types of SL(2)-orbits
of complex binary cubics: non-singular forms f (with A(f) # 0), and three
orbits of singular cubics, represented by the normal forms X?Y, X3, and 0.

PROPOSITION 18. All four types of complex binary cubics are realizable
by complex 3-folds.

Proof. We have seen this already for non-singular cubics. Clearly the
product P! x P? realizes the normal form X2?Y. The cubics of normal
forms X3 or 0 are degenerate, i.e. their Hessians vanish identically. There-
fore they can only be realized by non-Kéhlerian 3-folds. To realize X3 one
can blow up a point in an elliptic fiber bundle over a surface Y with
b,(Y) = 3; the trivial form occurs for elliptic fiber bundles over a surface
with b, = 4.

More detailed investigations of the possible homotopy types of real or
complex manifolds with b, = 2 will appear elsewhere [Sch].

Here we only want to illustrate an interesting phenomenon which relates
the ample cone of a projective 3-fold with b, = 2 to the Hessian of its
cup-form.

PROPOSITION 19. Let X be a smooth projective 3-fold with
by(X) =2. The ample cone €x is contained in the Hesse cone
Hri={he H*(X,R)|det(F(h)) < 0}.

Proof. This is only a special case of our general result in section 4.3.
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REMARK 14. The Hessian of a binary form F € S?®HV is identically zero
iff F is degenerate; it is negative semi-definite if F is non-degenerate and
A(F) < 0; it is indefinite iff A(F) > 0[Ca]. Only in the indefinite case
A(F) > 0 can the closure &7 := {h e Hg|det F'(h) <0} of the Hesse
cone be a proper subset of Hy.

EXAMPLE 16. Let P = Pp2(E) be the projectivization of a rank-2
vector bundle E with Chern classes c¢; = ¢;(£). The cup-form of P
yields the cubic polynomial [ = (cf — ) X2+ 3(—c) XY +3XY?
whose Hessian is Hy= (—c¢;)X?+ ¢; XY — Y2, Rewriting H; as
Hy= —;[QY - 1 X)2+ X2(4e, — )] = 2L [QY — e, X) 2 — A(f) X2] we
find 3 possibilities for the Hesse cone:

) A(f) <0:2 =H2(P,R)\{0}

i) A(f)=0:2¢;=H?*(P,R)\L., for a real line L. depending on
¢ (L., = R(2,¢)) in the coordinates X, Y)

i) A(f)>0:27, is an open cone whose angle is determined

by A(f) ((Z+)VANHX)(Z-)VA(f)X)>0 in coordinates
X,Z:=2Y - X).

5.3 3-FOLDS WITH b, > 3

Let X be a 1-connected, compact complex 3-fold with H,(X,Z) = Z93.
The cup-form of X gives rise to a curve Cy of degree 3 in the projective
plane P(H?(X, C)):

Cx:={<h>eP(H*(X,C))|h?=0}.

A first natural question is which types of plane cubic curves occur in
this way?

Recall that there are 10 types of plane cubics, namely: 1) non-singular
cubics, 2) irreducible cubics with a node, 3) irreducible cubics with a cusp,
4) reducible cubics consisting of a smooth conic and a transversal line,
5) smooth conics with a tangent line, 6) three lines forming a triangle, 7) three
distinct lines through a common point, 8) a double line with a third skew
line, 9) a triple line, 10) the trivial ‘cubic’ with equation 0.

LEMMA 4. If the 3-fold X has a non-trivial Hodge number
h29(X) #0, then Cx is of type 4), 6) 9) or 10).
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Proof. Choose basis vectors et/ € H%!(X), so that every h € H*(X, C)
can be uniquely written as 4 = xe>? + yel:! + ze%2.
Then clearly 43 = y[y2(el!)3 + 6xz(e20 - el! - e%2)].

We now realize the cubics of types 7)-10). These cubics are degenerate,
i.e. they are cones, and therefore their Hessians vanish identically. From
section 4.3 we know that they can not be realized by Kéhlerian 3-folds.

PROPOSITION 20. The plane cubics of types 7)-10) can all be realized
by I-connected, non-Kdhlerian 3-folds.

Proof. ‘Cubics’ of type 10) can be realized by elliptic fibre bundles
over surfaces Y with b,(Y) = 5. In order to realize cubics of type 9) or 7)
one blows up one or two points in an elliptic fibre bundle over a surface
with b, = 4 or 3 respectively. The realization of a type 8) cubic is a little
trickier: One starts with an elliptic fibre bundle over a surface Y with
b,(Y) =3, and blows up one of its fibers. The resulting 3-fold X’ has
b,(X') =2 and Fx- = 0. Now choose a line / in the exceptional divisor E
of X', and let X be the blow-up of X along /. The cup-form of X yields
the cubic polynomial x2[y(—3/:E)~— x(degNg,x-)] with a non-zero
coefficient — 3/ E = 3.

There are four types of complex cubics which we have been able to
realize by projective 3-folds.

PROPOSITION 21. Cubics of type 1), 3), 4) and 6) are realizable by
I-connected projective 3-folds.

Proof. Type 1) occurs for blow-ups of complete intersections in two
distinct points. The product P! x P! x P! realizes a triangle, whereas most
projective bundles over a surface with b, = 2 lead to the union of a smooth
conic and a transversal line.

Irreducible cubics with a cusp can be obtained by blowing-up a line and
a point in P3. The resulting 3-fold yields the cubic polynomial X3 — 3 XY?2
—2Y3 + 23 =X+ Y)2(X-2Y) + Z3.

The remaining two types of cubics are cubics with a node (type 2)), and
smooth conics with a tangent line (type 5)). We do not know if these types
are realizable by projective 3-folds. A non-Kéhlerian 3-fold whose cup-form
yields a nodal cubic can be constructed: one just takes the blow-up of two

suitable curves in Oguiso’s Calabi-Yau 3-fold with b, =1 and vanishing
cup-form.
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Finally we like to show that the non-emptiness condition on the index cone
of a projective 3-fold with 4£%2 = 0 gives non-trivial restrictions for the
possible cup-forms if b, > 4. Further investigations of this condition will
appear elsewhere [Sch].

ExXAMPLE 17. Let H be a free Z-module of rank 4 with basis
(€éi)i=1,...4. Consider a trilinear form F e S?*HY and its adjoint map
F':H— S?Hv. The image F‘(h) of an element 47 € H is in terms of
the chosen basis (e;);-; .. 4 represented by the symmetric 4 X 4-matrix
[[he;e;1]: =1, 4. Suppose this matrix is a diagonal sum [[ke;e]]; ;-1
@ [[herel) k. 1=3 4 such that the determinants of both 2 X 2-matrices are
negative for every 7 € H\{0}.

In this case F*(h) were of signature (1, —1, 1, —1) for every h € H\{0},
and we would have I = 27 = 0.

All these conditions can be met, e.g. by setting ele, = e; = eje, = e,
= 1,e,e? = e;e2 =2, and e;eje, = 0 otherwise. In this particular case the
image of 4 = Z?:  h;e; under F'is represented by the matrix

h; hy + 2h,

h1 + 2h2 2h1 + hZ

hy hs + 2hy

h; + 2hy 2h; + hy

which has a positive determinant unless # = 0.
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