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A(E)E = #(F")q. We thus obtain inclusions #.(F) C #.(F’), and
the reverse inclusions are trivial. [

Proof of Corollary 3.2. The first two statements follow immediately
from Theorem 3.1 and Theorem B. For the third, note that A_(F)
C A(F")q and if F’ # F then F has strictly more complex embeddings than
F' so A(F')q# #(F)q. Thus, to have #_(F) = #(F)qo we must have
F = F’. The claim then follows directly from Theorem B. [

REMARK. We have pointed out at the beginning of sect. 2 that #(F)
could have been replaced by K;(F) in all our discussions. The analog
of Borel’s theorem holds for K;(F) for all i =3 (mod 4), so the results
described above are also valid for these K-groups. When 1 < i =1 (mod 4)
Borel’s theorem gives a map K,;(F) — R"1*72 whose kernel is torsion and
whose image is a lattice. The only change is that one obtains r; + %(rz +r3)
and %(rz — r3) as the dimensions of the + and — eigenspaces in the analog
of Theorem B, and Corollary 3.2 therefore also needs modification. We leave
the details to the reader. The basic point is that if £ C C is Galois over Q
with group G and & is its conjugation then K;(£) ® R is G-equivariantly
isomorphic to { Y r,y e RG|r, = (= 1)0-D/2rg } for i > 1 and odd.

4. MILNOR’S AND RAMAKRISHNAN’S CONJECTURES

Milnor [10] made the following conjecture motivated by the fact
that D,(z) represents the volume of an ideal tetrahedron. For the signi-

ficance of this conjecture in hyperbolic geometry and number theory,
see [10], [11].

MILNOR’S CONJECTURE. For each integer N > 3, the real numbers
D;(e2mt ~V/NY with j relatively prime to N and 0 <J<N/2, are
linearly independent over the rationals.

A field homomorphism t: F — K clearly induces a homomorphism on
the Bloch groups #(F)— #4(K) which, by abuse of notation, will again
be denoted by 1.

Given a cyclotomic field F = Q(e?™ ~1/N)  the elements [e2niiinN],
with j relatively prime to N and 0 < J < N/2, form a basis of the Bloch
group 7(F) ® Q (see Bloch [2]). Hence Milnor’s conjecture can be refor-
mulated that D,: #(F)—> R given on generators by [z]~ D,(z) is
injective for a cyclotomic field F.
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Note that for a general number field F the above map D, vanishes
on %.(F). By Corollary 3.2, the following is thus the strongest genera-
lization of Milnor’s conjecture that one might hope for.

CONJECTURE 4.1. If F C C is a number field with F n R totally real
then the map D,: Z#(F)— R given by [z]— D,(z) Iis injective.

In the special case that F' is Galois over Q the condition ' n R totally
real says that F is a CM-field. In this case we have the following propo-
sition (cf. Prop. 7.2.5 of [16])

PROPOSITION 4.2. Suppose that F is a Galois CM-field over Q.
If for one complex embedding 7:F S C, the map D, ot Is injective
(that is, Conjecture 4.1 holds), then it is for all complex embeddings.

Proof. Let p:F & C be another embedding of F. There exists
vy € Gal(F/ Q) such that p = ty. Let ® € B(F) ® Q. If

D, 0 p(w) =Dy o t(y(w)) =0,

then by the injectivity of D, o 1,y(®w) = 0. Since y: Z(F) — #AF) is
clearly an isomorphism, it follows that w =0 in ZF) ® Q. Hence,
D, o p is also injective. [

The map D,: #(C) — R is the imaginary part of the more general
Bloch map

p: #(C)—>C/QQ2),

where the notation Q(k) denotes the subgroup 2n|/—1)*Q of C. The
definition of p is given as follows:

For z € C — {0, 1}, define
p(z) = logzAlog(l —z) + 2n)/—1

1 2
A——I (In, (1 — z) — In,(z) — w2/6) € A, C.

2n)/—1

See section 4 of [6] or [8] for the meaning of this map and for further details.
The exact formulae given here is borrowed from [8]. This map obviously
induces a map

p: Z(C)— ALC.
It turns out that p vanishes on the 5-term relation, hence it induces a map

p: #(C) = nyC.
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Finally, it follows from the fact that every element a of Z#(C) satisfies
the relation p(o) = 0 that the image of this last map lies in the kernel
of the map

e: ALC "SSP ALCH .
The kernel of e is C/Q(2). Hence this induces the Bloch map.
Ramakrishnan [16] generalized Milnor’s conjecture in the following
form?1).

RAMAKRISHNAN’S CONJECTURE. For every subfield F & C, the map

AF)® Q> #(C)®Q~C/QQ)
IS injective.

The Bloch-Wigner function D, is the imaginary part of the Bloch map p,
and it vanishes identically on %, (k). On the other hand, it follows from a
routine calculation that the real part of the Bloch map vanishes identically
on Z%_(k).

In particular, p just reduces to D, if Z_(F) = #(F)q. By Corollary 3.2
we thus have

ProroOSITION 4.3. If FCC is a CM-embedded field, then the
Ramakrishnan Conjecture for this particular embedding of F is equivalent
to Conjecture 4.1. [

On the other hand

PROPOSITION 4.4. The truth of the Ramakrishnan Conjecture for a
field E =FE CC would imply Conjecture 4.1 for any subfield of E.

Proof. Since the real and imaginary parts of p vanish on %_(E)
and #, (E) respectively, the Ramakrishnan conjecture'for E is equivalent to
the conjecture that the kernel of the real part of p is exactly % _(E) and
the kernel of the imaginary part, that is Ker(D,), is exactly %, (E).
Thus D, would have zero kernel on #(F)q for any subfield F of E
satisfying A (F)q N #,(E) = {0}, which is equivalent to the condition of
Conjecture 4.1 by Corollary 3.2. [

_ 1) Both Ramakrishnan’s conjecture and Milnor’s original conjecture are more general
in that. they apply to all the odd-degree higher K-groups. We refer to [16] for more details.
Likewise, Conjecture 4.1 can be stated for higher K-groups in similar fashion.
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