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Proof. Since n > 1, if T C T” is a circle subgroup then v(X/T) =0.
Applying Theorem 4.5 to the bundle T—->X—X/T yields the con-
clusion. [

COROLLARY 4.8. If n>1 then x,(T"):Z"—Z" iszero. [

5. A HIGHER ANALOG OF GOTTLIEB’S THEOREM

Let G be a group of type .7. Gottlieb’s theorem (see Propositions 1.3
and 2.4) asserts that if 1 (G) # 0 then Z(G), the center of G, is trivial. We
prove an analogous theorem for yx,(G; Q): if x:(G; Q) # O then the center
of Gis infinite cyclic provided G satisfies an extra hypothesis (explained below)
related to the Bass Conjecture; see Proposition 5.2 and Theorem 5.4.

Throughout this section R will be a commutative ground ring. Let S be
any associative R-algebra with unit. The Hochschild homology group
HH,(S) is the R-module S/[S, S] where [S, S] is the R-submodule of §
generated by {ab — ba|a, b € S}; see §2. Recall that Ko(S) is the abelian
group F/A where F is the free abelian group generated by the set of
all isomorphism classes [M] of finitely generated projective right S-modules
M C @7, S and A is the subgroup of F generated by relations of the form
M, ® M,] — [M,] — [M,]. Since a finitely generated projective module is
the image of a finitely generated free module under an idempotent homo-
morphism, each element of K,(S) can be represented by an idempotent
matrix over S. The Hattori-Stallings trace Ty: Ko(S) > HH(S) is defined
as follows. Let A: M — M be an idempotent endomorphism of a free, finitely
generated right S-module M representing x € Ky(S). If [A] is the matrix
of A with respect to a given basis for M then T,(x) is defined to be
To([A]) € HH,(S).

Consider the groupring, RG, of a group G over R. Then HH,(RG)
is naturally isomorphic to the free R-module generated by G;, the set
of conjugacy classes of G (see §2 for an explanation in the case R = Z).
Recall that for g € G we write C(g) € G, for the conjugacy class of g,
HHy(RG)cy for the summand of HH (RG) corresponding to C(g)
and xc¢(,) for the C(g)-component of x € HH,(RG). Also write HHy(RG)
= HHy(RG)cy ® HHy(RG)" where 1 € G is the identity element of G,
and HH,(RG)" is the direct sum of the remaining summands. The
augmentation homomorphism €:RG — R induces a homomorphism
ex: HHy(RG) > HH,(R) = R.
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STRONG BASs PROPERTY. We say that the group G has the Strong Bass
Property over R, abbreviated to “SBP over R”, if the image of the homo-
morphism Ty: Ko(RG) = HH(RG) lies in the HH(RG) ¢(;) summand.

WEAK BASS PROPERTY. We say that the group G has the Weak Bass
Property over R, abbreviated to “WBP over R”, if the composite

projection

T €x
Ko(RG) = HH,(RG) HH,(RG)' > R

is zero.

Clearly, if G has the SBP over R then it also has WBP over R. There are
well-known conjectures concerning the SBP and the WBP (see [Bass], [DV]
and [St, §4.1]):

STRONG BASS CONJECTURE. Every group has the SBP over Z.

WEAK BASS CONJECTURE. Every group has the WBP over Z.

The corresponding conjectures are false over Q for a group which has
nontrivial torsion; instead, one could conjecture:

STRONG BASS CONJECTURE OVER Q. Every torsion free group has the SBP
over Q.

WEAK BASS CONJECTURE OVER Q. Every torsion free group has the WBP
over Q.

Each element of the center of G, Z(G), makes up its own conjugacy class.
Given a subgroup N of Z(G), let HHy(RG)n = @ c(eyecovy HHo(RG) c(y)
where c(/N) is the set of conjugacy classes in G represented by elements
of N. Then HHy(RG) = HHy(RG)y ® HH,(RG),, where HHy(RG)} is
the direct sum of the summands corresponding to the conjugacy classes
not in c(V).

PrROPERTY C. We say that the group G has Property C over R if there exists
a non-empty subset N of Z(G) such that the composite

projection

T Lo
KO(RG)—(:HHO(RG) HH,(RG)y— R

1S zero.
By taking N to be the trivial subgroup of Z(G) we see that if G has the
WBP over R then it also has Property C over R.
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Recall that a group G is said to have finite cohomological dimension over
the commutative ground ring R if there exists an integer N such that
H*(G, M) = 0 for all RG-modules M and for all k¥ > N. Also, G is said to
be of type FP,, over R if the trivial RG-module R has a resolution by finitely
generated projective RG-modules.

The following proposition is derived from the techniques of [St, §3].

PROPOSITION 5.1. Let R be a principal ideal domain of characteristic
p > 0. Supposethat G isoftype FP. over R and has finite cohomo-
logical dimension over R. Suppose also that G has a subgroup H of
finite index which has Property C over R; furthermore, if p >0 assume
that p does not divide |[G:H). If the Euler characteristic ¥ (G;R)
Yiso(—1irankg H;(G,R) is non-zero modulo p then the center
of G is finite.

Il

Proof. Since H is of finite index in G, H is also of type FP, over R
([Bi, Proposition 2.5]) and has finite cohomological dimension over R
([Bi, Corollary 5.10]). Furthermore, ¥(H;R) =[G:H]x(G;R) and so
v (H; R) # 0 mod p.

We show that the center of H, Z(H), is finite. It then follows that
the center of G, Z(G), is finite because there is an exact sequence
1> Z(G)n H—> Z(G) > Ng(H)/H, where Ng(H) is the normalizer
of H in G, and the groups Ngs(H)/H and Z(G) n H C Z(H) are finite.

Since H is of type FP, over R and has finite cohomological dimension
over R, it follows that R has a finite resolution, 0 > P, — -+ = P,
— R — 0, where each P; is a finitely generated projective RH-module
(combine [Bi, Proposition 4.1(b)] and [Bi, Proposition 1.5])). Lete: RH — R
be the augmentation homomorphism. Consider the commutative square:

Ty

K,(RH) —  HH,(RH)
€y l Ex l

T,

Ko(R) — HHy(R)=R

Let a=7Y,.0(-D"[P] € Ko(RH). Then e4(To(w)) = To(ex(a))
= x(H;R) -1 where 1 € R is the unity in R. The second equality is
the classical Hopf trace formula over the principal ideal domain R.
(Stallings ([St]) calls To(a) € HHy(RH) the Euler characteristic of the
projective RH-complex P, .) Since H is assumed to have Property C over R,
there is a non-empty subset NV of Z(H) such that g4 (Tp(a)) = &4 (To(a)n).
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Since ¥(H;R) #0 mod p, it follows that Ty(a)cwu #0 for some
heNCZ(H). Recall that the group Z(H) acts on HH,(RH) by
(rC(h))®w = rC(ho-') where reR, heH, and oeZ(#H). By
[St, Theorem 3.4] (compare (2.3) above), Ty(a)w = Ty(a) for all w € Z(H).
Since an element of HH,(RH) is a finite linear combination of conjugacy
classes, it follows that the condition To(a)cpy # 0 with A as above is
impossible unless Z(H) is finite. [

We will be interested in groups with the property that certain of their
central quotients have Property C “virtually”:

PROPERTY D. Let p > 0 be the characteristic of R. We say that the
group G has Property D over R if the following condition holds. Given
any element t in the center of G with the property that the extension
class egx € H>(G/{t);R) is zero (where (1) is the cyclic subgroup
generated by 1), there is a finite index subgroup H C G/{71) such that H
has Property C over R; moreover, if p > 0 we require that p does not
divide [G : H].

The next Proposition is our ‘“‘higher” analog of Gottlieb’s theorem over
a field of arbitrary characteristic; Theorem 5.4, below, is a more usable
version over Q.

PROPOSITION 5.2. Let F be a field. Suppose G is a group of
type & such that G has Property D over F. If %.(G;F)#0, then
the center of G s infinite cyclic.

Proof. Let T be any element in Z(G), the center of G, such that
v1(G; F) (1) # 0. Since G is necessarily torsion free, the group 7 = (1) 1is
infinite cyclic. By [Bi, Proposition 2.7] G/T is of type FP, over Z (and
hence over any commutative ring). Since T is central, the Serre fibration
S'= K(T,1) > K(G,1) > K(G/T,1) is orientable. By Theorem 4.2,
er = 0e€ H*(G/T;F), and x(G/T;F) exists and is non-zero mod p where
p = 0 is the characteristic of F. Consider the following portion of the
cohomology Gysin sequence of the fibration S!'— K(G, 1) > K(G/T, 1),
with coefficients in an arbitrary FG/T-module M:

Hi-2(G/T; M) = HI(G/T: M)~ H(G; M) .

Since ey = 0, H(G/T; M) > H(G; M) is injective and so H (G/T,M) =0
for i > dim X where X is a finite complex homotopy equivalent to K(G, 1).
In particular, Proposition 5.1 applies to G/ T and so the center of G/ T is
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finite. Since the image of Z(G) in G/T is central, it follows that Z (G) is
an extension of 7 by a finite group. Thus Z(G) is infinite cyclic since G
is torsion free. [

Property D may be hard to verify for an arbitrary coefficient ring R.
However, when R = Q we have:

PROPOSITION 5.3. Let G be a finitely generated group which has the
WBP over Q. Then G has Property D over Q.

Proof. Suppose T € Z(G) is such that the extension class eq € H?(G/T; Q)
is zero where T is the cyclic subgroup of G generated by t. Consider the
following portion of the long exact sequence in cohomology associated to
the short exact sequence of coefficients, 0 > Z 5 Q—-Q/Z~-0:

HYG/T;Q/Z) > H*(G/T;Z) > H>(G/T: Q) .

By exactness, j«(ez) = eq = 0 implies ez = §(u) for some u € H'(G/T, Q/Z).
Let I = ker(u) where we regard u as an element of Hom(G/T, Q/Z)
= H'(G/T,Q/Z). Since G is finitely generated, H & G/T is of finite
index. Let H' = n -1 (H) where n: G — G/ T is the quotient homomorphism.
Then H' is isomorphic to H X T because i*(ez) = 0. In particular, H is
isomorphic to a subgroup of G. Let p: H— G be a monomorphism. The
commutative diagram

Ko(QH) = HH,(QH)
ne | |
K,(QG) = HH,(QG)

and the observation that p«(HHo(QH))cu) C HHy(QG)cy and
u« (HHy(QH)') C HH,(QG)’ imply that H has the WBP over Q (and
thus Property C over Q). [

Combining Propositions 5.2 and 5.3 we get:

THEOREM 5.4. Suppose that G is a group of type ¥ and has the

WBP over Q. If x:1(G;Q)#0, then the center of G is infinite
cyclic. [

Groups of type .# are a very special class of torsion free groups; one would
hope that all groups of type .# have the WBP over Q. There are special classes

of groups of type . which are known to have the WBP over Q. We recall
two such classes.
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A group G is a linear group if it is a subgroup of GL(n, K) where K
is a field of characteristic zero. Bass [Bass, Theorem 9.6] proved that a torsion
free linear group has the SBP over C (and thus has the WBP over Q);
also see [Eck].

COROLLARY 5.5. Suppose G is a linear group of type . If
v1(G; Q) # 0, then the center of G is infinite cyclic. ]

Eckmann [Eck] proved that a group of cohomological dimension 2
over Q has the SBP over Q. Consequently:

COROLLARY 5.6. Suppose G is of type & and has cohomological
dimension 2 over Q. If v%,(G;Q) # 0, then the center of G is infinite
cyclic. U]

There is a sense in which we can say that y;(G; Q) is an integer. Denote
the composite homomorphism Z(G) < G 4 H,(G;Z)—- H,(G;Q) by
Aq: Z(G) — H,(G; Q).

THEOREM 5.7. Let G be a group of type ¥ which has the WBP
over Q. Then there exists an integer ng (depending only on G) such
that %:1(G; Q) = ngAq-

Proof. If x,(G; Q) = 0 take ng = 0. If x;(G; Q) # 0 then by Theorem 5.4
the center of G is infinite cyclic. Let t € Z(G) generate Z(G). Since
x1(G; Q) # 0 we have %;(G;Q)(t) # 0. By Theorem 4.2, %;(G; Q) (1)
= —x(G/<{t); Q){t}. Then for any integer r: %1 (G; Q) (t") = ry,(G; Q) (1)
= —ry(G/<1); Q) {t} = —x(G/{1); Q) Aq(t"). Thus %:(G;Q) = ngAq
with ng = — ¢ (G/{1); Q). [

Remarks.

1. All integers occur as ng for some G. Given n € Z, there is a group H
of type . with y(H) = — n (e.g. take H to be an appropriate Cartesian pro-
duct of free groups). Let G = H X T where T is infinite cyclic. Clearly,
Y (G/{t);Q) =y(H) where Tt is a generator of (1) X TC G and so
x1(G; Q) = nAg (alternatively, see Example 6.15).

2. Theorem 5.7 remains true without the hypothesis that G has the WBP
over Q although the proof is considerably more lengthy. To prove this
strengthened result, one shows that for any group G of type % :
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(@) The restriction of ¥,(G; Q) to Z(G) N [G, G1] is zero.
(b) If %:(G; Q) # 0 then dimoAq(Z(G)) = 1.
The desired conclusion follows easily from (a), (b) and Theorem 4.2.
Theorem 5.7 raises the question: For what groups G of type F s
v1(G, Q) # 0? We give a necessary condition. Recall that a group H has type
F G if there is a finitely dominated K(H, 1) (i.e. K(H, 1) is a homotopy
retract of a finite complex).

PROPOSITION 5.8. If %:(G,Q)#0 then G is isomorphic to a
semidirect product (H,t|tht='=0(h) for all heH) where H
has type ¥ 9.

Proof. Let T € Z(G) be such that y;(G, Q) (1) # 0. By Theorem 4.2,
it follows that {t} € H,(G) = Gy, is of infinite order. Thus there is an
epimorphism p: G — Z with p(t) = n for some n > 0. Let H = ker(p).
Since T € Z(G), p~'(nZ) = H X Z and has finite index in G. Thus H X Z
has type .7 and so H has type .¥ 2. [l

Thus it is worthwhile to compute %, (G, Q) in terms of such a semidirect
product structure. The geometric problem underlying this is the study of
v1(X) where X is a mapping torus. We study this next, returning to the
group theoretic case in §7.

6. MAPPING TORI

In this section, we consider %;(X) and y;(X) when X is the mapping
torus of a map f: Z — Z. The main results are Theorems 6.3, 6.13, 6.14, 6.16
and Corollary 6.18. Applications to the aspherical case will be given in §7.

Suppose Z is a path connected space and has a basepoint v € Z. Given
a continuous map f:Z — Z, its mapping torus, denoted by T(Z, f), is
the space obtained from Z X [0, 1] by identifying (z, 1) with (f(z), 0) for
each z € Z. The image of (z,u) e Z X [0,1] in T(Z, f) will be denoted
by [z, u]. Choose a basepath ¢ from v to f(v) and let 6: H — H be the
self homomorphism of H = n,(Z,v) determined by f and o.

Let X =T(Z,f). Choose w=[v,0] as a basepoint for X and let
G = m,(X, w). There is a canonical map of X to the standard circle S!
(realized as complex numbers of unit modulus) given by: p;: X — S!,
pr(z,s]) = e?™is. Let i: Z & X be the inclusion z = [z, 0].
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