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4. MULTIRAPPORTS

4.1 Groupoïdes ET «-RAPPORTS

Dans ce paragraphe, on fait quelques remarques sur des invariants liés au
groupoïde m associé à l'espace projectif Pm(F). Notons Pm(F) le
dual projectif de Pm(F). Si (xi, xn; (pi, «.., (pn) est un élément de

(Pm(F))n x (Pm(F))n tel que (p/(xj) ^ 0, où (^) désigne un représentant
vectoriel, on considère l'élément de Fx

T 1
<Pl(Xl)V2(X2) Vn{Xn)

[xi, ...,xn;(pl5 ...,(pw] _ _ _ _ =;——
<Pi(x2)<p2(x3)... <p„(xi)

C'est un invariant projectif de la configuration constituée des « points x,-

et des « hyperplans Ht associés aux (p/. Remarquer que

[*0(1) ' • • • 5 *C(H) J (Po(l)î • • • > ^PG(«)] [* 1 • » *9 Xn (p i (p n ]

pour tout élément o du groupe engendré par le cycle (12...«).
On appelle [xi9 xn \ cpi, (p„] le «-rapport de cette configuration; on

le note aussi [xx fxn; H\ 9 Hn]. Si m 1 et « 2, on a exactement

[*1,*2Î yi, yz] r(xl9x2;yi,y2)

Pour x\, x„;cp cp„ comme ci-dessus, posons ai^(xi)xi+1>
n Hi pour i ^ n et an <Xi, xn) n Hn.

Proposition 4. On a dans le groupoïde l'interprétation géométrique

suivante du n-rapport

[Xif ...,xn; (pi, (pj =/„° A-i ° ° /i
où fi^Xi^Xi^i pour i * n et fn xn + 1^xl.

Preuve. Il suffit de remarquer que l'application linéaire p~l(xi)
~^p~l(xi+1) dont le graphe est conjugué harmonique de p~l(ai) par

rapport à p ~1 (x,-) et p~l(xi+1) associe à X; le vecteur _ x xi+ j.f r+ 1 (*/+ l)

Montrons sur un exemple comment les «-rapports apparaissent naturellement

dans certains invariants projectifs. Soit V un F-espace vectoriel de

dimension finie et F* son dual, si o e Sn est une permutation, l'application
multilinéaire

IG:Vn x (V*)n^F
n

(xi, <p m- J] <p,(*0(i))
/ - 1
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est invariante sous l'action diagonale de GL(V) dans Vn x (V*)n (il est bien

connu [14] que ces fonctions jouent un rôle en théorie des invariants). Par

suite, si (xi, ...,x„;(pi, ...,(p„) sont comme précédemment et si o,[ie5„,
on obtient un invariant projectif /0)[là valeurs dans Fx en posant

/G(xi, ...,x„;(pi,Ja, n (%1 } '"> %n > Ql > •••> Q77) —

/^(xl5 ...,x„; (Pi, cpj

Soit alors

(ù,C, ••*,4) UiJz> Ji) (tl9t2, --,ts)
la décomposition en cycles de la permutation o ~1 p, on vérifie facilement la
relation

Ja^(xu ...,x„; (p(p„) [x0(/l), ...,xo(/yt); (p/l? cp/J

5 •••? Xo(ji) ' ^y'i > •••> Qy'/] ' ' ' L^oCq) J •••) -*"a(/v) 5 Ip/j 5 •••> Q/s] •

4.2 Remarques sur un invariant de Goncharov

Considérons X\, xn, y{, yn, 2n points en position générale de

p«- et posons

[[xi x. m.,, Xg, y i, yn]J [xi, xn \ Hi, Hn ]

où Hi est l'hyperplan (y{, ...,yn ...,yn); on obtient un invariant projectif
qui vérifie en particulier

[[*i ,x2;yl,y2]]-(rix2;y,y2)) 1

Soit «dét» le déterminant dans une base arbitraire de F"+1, d'après la
définition du n-rapport, on peut écrire

[[1t,,...,xn;y,,...,yn]] F", xf)
^

II / i dét (y i, y j 9 xn, xf||)
où t est la permutation cyclique (12...n); en particulier si on prend comme
coordonnées homogènes de xl5 ...,xn)ylt ...,yn

an aln 1 0 0

0 1 0

an\ • • ann 0 0 1

on a l'expression

#11 #22 * ' ' #77«

#12 #23 ' ' ' #/7l
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Soit Z[FX] l'algèbre du groupe multiplicatif de F. On définit un invariant

projectif de 2n points x1} ...,x2n en position générale de Pn~l(F) en posant
dans Z[FX]

fn\X 1 •••»^2«) ^ ^c[[-^a(l)5 • • • %o (2n) ]] •

° 6 52/7

Pour n 3 on retrouve l'invariant de 6 points du plan projectif P2(F)
considéré par Goncharov dans son travail sur la conjecture de Zagier [8].

La proposition 4 montre que, pour n 3, [[x{, ...,x6\\ s'interprète dans
a i

le groupoïde :^2 comme la composée /3 o /2 o fx, où f\ Xi - x2,
f2 x2-*x3, f3=x3-*Xi et les points sont comme sur la figure 11.

On aurait pu aussi procéder en s'inspirant de la figure 12, c'est-à-dire poser

[[a i, ' " i x n 9 y i, *.., y n ]] \x i,. •., xn $ L i Ln ]

où Li est l'hyperplan <j/, x„), où xn + ï x{ et définir
l'invariant projectif de 2n points

y n (-^ 1 5 •••5 -^2 n) [[^o(l)5 «"j ^o(2n)]]
o e Sln
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Proposition 5. Considérons Vinvolution de Z[FX] donnée par

n(n + 1)
- + n - 1

^ (-1) 2 n„

où n„ est Vinvolution de Z[FX] provenant de la multiplication par

(- \)n dans Fx, on a

r n
~ ^n ° Y n

Preuve. Pour simplifier on posera

\ji,...,jn|: dét(xh,

On a la relation

| n + 1,3,..., //, 1 1 \ n + /', 1,...,/,/ + 1,...,//,/' 1 | 2/?,2, ...,n — l,n\
A

| h + 1,3, ...,/z,2 | | /2 + /, 1,...,/,/+ 1,1 |
I 2^,2,...,//- 1,1 |

I 1,3,...,«, w + 1 | | 1-h 1,...,//,// + /1 \2,...,n,2n \

(-1)" -2
Ä ; ; î

| 2,3, ...,//,« + 1 | | 1,+ /1 | 1,2, ...,n - 1,2/2 |

| 2,3, ...,//, 2/2 | | 1, ...,/ + 1, ...,/2,/2 + / I I 1, ...,/2 - 1,2/2 — 1 I

I 2, 3, ...,/?, /2 + 1 |... 11,..., i + l,...,/2,/2 + /+ 1 | | 1, ...,/2 — 1, 2/r |

Par suite,

[[Xi, X2fll] — — 1)" [[ATx 1) Xx(2«)]]

où t est la permutation

/I 2 n n + 1 2/t >

\2/7 n -h 1 2/2 - 1 1 n

n(n + 1)

La signature de t est égale à - 1) 2 +" d'où la proposition.

On voit que si co: Z [Fx] F est le morphisme de Z-modules déduit de

l'injection de Fx dans F, alors co o fn 0 pour n 0, 3 (mod 4); l'analogue
classique de l'invariant de Goncharov r3 est donc trivial.

Dans la preuve de la conjecture de Zagier, pour n 2 et 3, l'invariant rn
est couplé au //-logarithme (voir [9,8,4]); l'analogue pour n > 3 est une
question intéressante qui reste mystérieuse.

Après soumission de cet article, j'ai appris l'existence de deux preprints qui
considèrent aussi la catégorie des points de l'espace projectif. Elle semble avoir
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été introduite par Koch [11] dans une courte note ancienne et non publiée;
Diers et Leroy [5] l'utilisent pour retrouver des résultats classiques de

géométrie. Les résultats qui précèdent sont indépendants de ces articles.
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