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276 J.-L. CATHELINEAU

4. MULTIRAPPORTS

4.1 GROUPOIDES ET n-RAPPORTS

Dans ce paragraphe, on fait quelques remarques sur des invariants liés au
groupoide ¢, associé a I’espace projectif P™(F). Notons lv’m(F ) le
dual projectifV de P"(F). Si (X1,....,%Xn;01,...,0,) est un élément de
(Pm(F))" x (P™(F))" tel que ¢;(X;) # 0, o (~) désigne un représentant
vectoriel, on considére 1’élément de F %

. @1(}1)62(;2) (Bn (-)_én)

01(X2) G2(X3) ... 0, (X))
C’est un invariant projectif de la configuration constituée des »n points x;
et des n hyperplans H; associés aux ¢;. Remarquer que

[X15 s Xn5 Q15 vens 9]

[Xo(1)s oes Xo(m)s Potys <o Oom] = [X1s oos X053 @015 o, 0]

pour tout élément o du groupe engendré par le cycle (12...n).
On appelle [x1, ..., Xn3 ©1, ..., ©,] le n-rapport de cette configuration; on
le note aussi [x{, ..., X, Hy, ..., H,]. Si m=1 et n =2, on a exactement

[X1, X2 V1, 2] = r(x1, X201, )2) -

Pour x;,...,X,;041,...,¢0, comme ci-dessus, posons a; = {X;, X;j+1
NH;,pouri#neta,=<{x1,X,) NH,.

PROPOSITION 4. On a dans le groupoide ¢, [’interprétation géomé-
trique suivante du n-rapport

[x19-'°9xn;(pls-'-9(pn] :fnofn—l O ... Ofl ’

dn

ou fi=Xx; .t Xiy1 pour i#+n et f,=X,,1 X1.
Preuve. 11 suffit de remarquer que Dapplication linéaire p~'(x;)
— p~1(x;;1) dont le graphe est conjugué harmonique de p~!'(a;) par

rapport & p~!(x;) et p~1(x;,;) associe & X; le vecteur %(i")— Xiv1. LI

= i
iv1(Xip1)

Montrons sur un exemple comment les n-rapports apparaissent naturel-
lement dans certains invariants projectifs. Soit V un F-espace vectoriel de
dimension finie et V'* son dual, si ¢ € S, est une permutation, 1’application
multilinéaire

I,:Vrx (V¥n—F

n
(X1 e X3 G1s s 60) = J] 6:(Xo9)
i=1
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est invariante sous I’action diagonale de GL (V) dans V" x (V*)7 (il est bien
connu [14] que ces fonctions jouent un role en théorie des invariants). Par
suite, si (X1, ..., Xn3P1, ..., ¢,) sont comme précédemment et si o, 1 € S,
on obtient un invariant projectif J, , a valeurs dans F'* en posant

_ 10(21’ '“53511; (Blﬁ R (‘pn)

— —

Ip.()_él, ---axn; (pls sy (pn)

JG,u(xls ---,xn;(pla seey (pn)

Soit alors

(il9i23 ...9ik) (j19j29 ..'5.].1) e (t19t29 ...,Zs)

la décomposition en cycles de la permutation ¢ ~!u, on vérifie facilement la
relation

JG,u(x19 ey Xns Oy eney (pn) = [Xc(i1)9 eeey Xc(ik); (pils ceey (pik] .
[xo(jl)a s X (s Qs ey @] 0 [xo(tl): s Xo(t)s Prys ooy (Dts] .
4.2 REMARQUES SUR UN INVARIANT DE GONCHAROV

Considérons Xy, ...,X,, Y1, ..., Vn, 20 points en position générale de
P7-1(F) et posons

[[xls ey Xns Vi "'syn]] = [xla "-9xn;H19 -°-’Hn] ’

ou H; est I’hyperplan {y,, ...,)Af,-, ..., ¥»»; on obtient un invariant projectif
qui vérifie en particulier

[Dx1, 2590, 3201 = (F(x1, X205 01, 92)) 1.

Soit «dét» le déterminant dans une base arbitraire de F7+!, d’aprés la
définition du n-rapport, on peut écrire

n , - A — —
H[:}det(yly ey Vig eees xnaxi)

n 7 — i\> — —
II,_,dét(y,, ..., y;, ooy Xn s Xoqiy)

[[xls s Xns Vi ---;yn]] =

b

ou T est la permutation cyclique (12...#); en particulier si on prend comme
coordonnées homogeénes de x,, ..., XnsViyeens Vn

a . . . adiy 1 0 . . . 0
o1 . . .0
anl . . . ann 0 O . " . 1 )
on a I’expression
a1 Qs " Ay,

(X1, coes X3 0105 ey vl =

A12dz3 " Ay
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Soit Z [F*] ’algébre du groupe multiplicatif de . On définit un invariant
projectif de 2z points xy, ..., X,, en position générale de P”~!(F) en posant
dans Z[F %]

Fu(X1s ooy Xon) = Z 86[[Xc(l)s--->xc(2n)]]'

6 €Sy,

Pour n = 3 on retrouve l’invariant de 6 points du plan projectif P2(F)
considéré par Goncharov dans son travail sur la conjecture de Zagier [8].

La proposition 4 montre que, pour n = 3, [[x, ..., X¢]] s’interpréte dans
le groupoide ¥, comme la composée f50 f,o fi, ou fi =X 4 X5,
fr=x; 3 X3, f3 = X3 3 x; et les points a; sont comme sur la figure 11.

FIGURE 11

On aurait pu aussi procéder en s’inspirant de la figure 12, c’est-a-dire poser

[[x15 "'axn;yls "‘)yn]]’ = [x13 "'an;L].’ “')Ln] b
. , NN ; P
ou L; est Phyperplan {p;, X1, ..., Xis Xit 15 «--» Xn?, OU X, 41 = X et définir
I’invariant projectif de 2n points

7;(X1,~-,X2n)= E 80[[x0(1):---;x0(2n)]]l-

c €Sy,

X3

X /"1 oy
x

4 FIGURE 12

Ces deux invariants sont essentiellement les mémes.
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PROPOSITION 5. Considérons linvolution de Z[F*] donnée par

nin+1)
—  tn

-]

7\.,1 = (_ 1) 2%
ol W, est involution de Z[F*] provenant de la multiplication par
(- 1)" dans F*, ona

Fro=MknOry,.

Preuve. Pour simplifier on posera

|j1, ...,jn|:= dét()—éjl, ...,)—C:jn) .
On a la relation
A N _
ln+1,3,..,m1 . n+il, i+l ,ni|..]2n2,..,n- 1,n|
A /\ .
ln+1,3,...n2 . \n+i1,. 5+ 1. ni+1 ... |2n,2,..,n—1,1]
N
1)n 11,3, comn+ 1| | ,i+ 1, nn+il..]2,...,n2n]
o 12,3, mn+ 1] |1, g+ i 1,200 = 1,210
N
2,3,0m2n L0+ L+ il |1,..,n—1,2n—1]
=(—-1 = :
12,3, ..,mn+ 1. |1, i+ L, +i+ 1] ]1,..,n—1,2n]
Par suite,

[[x1, --->X2n]]' =(—1)" [[Xr(l)a --~,X1(2n)]] )

ou T est la permutation

1 2 n n+1 ... 2n
on n+1 ... 2n—1 1 ... n]

n(n+1)

La signature de T est égale a (—1) 2 "

' dou la proposition. [

On voit que si w: Z[F*] — F est le morphisme de Z-modules déduit de
I’injection de F* dans F, alors ® © r, = 0 pour n = 0, 3 (mod 4); ’analogue
classique de I’invariant de Goncharov r; est donc trivial.

Dans la preuve de la conjecture de Zagier, pour n = 2 et 3, 'invariant r,
est couplé au m-logarithme (voir [9, 8, 4]); ’analogue pour #n > 3 est une
question intéressante qui reste mystérieuse.

Apres soumission de cet article, j’ai appris I’existence de deux preprints qui
considérent aussi la catégorie des points de I’espace projectif. Elle semble avoir
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été introduite par Koch [11] dans une courte note ancienne et non publiée;
Diers et Leroy [5] I’utilisent pour retrouver des résultats classiques de
géométrie. Les résultats qui précédent sont indépendants de ces articles.
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