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274 J,-L. CATHELINEAU

= (Mg, ..., AV,). Pour Pacyclicité, on remarque que si d(Zi(Uf), 50 =0,
on peut choisir un vecteur v de F®™ indépendant de tous les v ; et alors on
vérifie que ¥, (vg, ...,v5) = d(X,(v, 05, ...,0")). Pour terminer la preuve,
il suffit d’observer que le complexe des coinvariants de (2), sous I’action de
Z[F*], s’identifie au complexe (1); cela résulte du fait que les orbites
de %, sous l’action de F* sont en bijection naturelle avec les éléments de
A,; en effet a V'orbite de I’élément (vy, v, ...,0,) € &, est associé le
n-repére projectif image de (vg, v, ...,0,, Y. U;) par p; inversement soit un
repere projectif (xo, X1, ..., X,, ®) et soit D; la droite au-dessus de x; et A
celle au-dessus de w, ce repere provient de ’orbite de (vo, vy, ..., U,), OU les
v; sont les éléments de la décomposition d’un vecteur de la droite A dans la
somme directe des D;. [

Le groupe projectif GP(F ™) opére dans le complexe (1) par
f(XOaxla sesy xna(’)) = (f(X()), f(xl): seey f(xn)a f((,l))) .

L’action induite en homologie est triviale. Cela résulte d’un argument standard
d’algebre homologique (voir par exemple [2]); en effet cette action provient,
par passage aux coinvariants, d’une action de GL(F™) dans la réso-
lution (2), action qui est triviale sur Z et coincide avec 1’action diagonale
sur les éléments de %, ; noter que cette action commute avec celle de Z[F *].

3.2 HOMOLOGIE DU GROUPE LINEAIRE ET GRASSMANNIENNES INFINIES

On va esquisser une description géométrique analogue pour ’homologie
du groupe linéaire GL (/, F) en utilisant les considérations du paragraphe 2.
Relativement a la grassmannienne G =-/(F) des sous-espaces de dimension
[ —1 de P> (F), on peut définir des groupoides ¥, ; et ¢, , analogues
4 Tn et 0. Pour n>0, %' désigne I’ensemble des (n + 2)-uplets
(Xo, X1, ..., X,, Y) d’éléments de G=/(F) tels que n + 1 d’entre eux soient
en position générale dans P> (F) et Y est contenu dans le sous-espace
(X, X1, ..., X,): ces (n + 2)-uplets jouent le réle des repéres projectifs;
on pose de plus %4 = G=/(F). On est conduit naturellement a la construc-
tion d’un complexe géométrique

d

3) e Sz S 2%l 1S S z[#1 -0,

dont les groupes d’homologie coincident avec ceux de GL(/, F). Dans (3),
Z[{#'] est le Z-module libre de générateurs les éléments de ., et
d= Y, ,(~1)19; ou

8;(Xo, ey X, ¥) = (Xo, oty Xiy ooy X, Y1),
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avec Y; = (X, ...,)A(,-, X)) N (Y, X;). Le théoréme 4 se généralise alors
sous la forme suivante.

THEOREME 5. L’homologie Hy(GL(l,F),Z) du groupe linéaire
GL(l,F) est isomorphe a celle du complexe (3).

Preuve. 11 suffit encore de remarquer que le complexe (3) s’identifie au
complexe des coinvariants d’une résolution de Z par des Z[GL (/, F )]-modules
libres.

Pour cela, on introduit ’ensemble %’; des

VO Vl V,,
—— — —
! 1 / 1 !
(Vs s 00)s (V15 eees Uy eees (U oes U))

ot {v’}; ; est une famille libre de F™. Le Z-module libre Z[% ! 1 est aussi un
Z[GL(l, F)]-module libre pour [Daction définie comme suit: si
g=1(a;j)i<ij<ci € V=(01,...,0;), on pose g.V = (Zjaljuj, e Zja,juj)
et g.(Vo,.... Vo) =(g.Vo,...,8.V,). On a alors une Z[GL(/, F)]-réso-
lution acyclique de Z
S zlen S ee, ) S S LT S 2,

en posant d(Vo, .., V)= %' (=1 (Vos ..., Vi, .. V). Indiquons
comment 7' paramétrise les orbites de GL(/,F) dans %'. A lorbite
de 1’élément (Vo, ..., V,) € %f, correspond I’élément (X,, Xi, ..., X,,Y)
e #! défini comme suit: X; est associé au sous-espace de F™ engendré
par {v},...,0t} et Y & celui engendré par {¥7_,v},..., ¥, _,vi}. O

Comme au paragraphe précédent, ’action naturelle du groupe projectif
GP(F™) dans le complexe (3) induit I’action triviale en homologie.

A.A. Suslin [16] a prouvé le résultat de stabilité suivant

THEOREME 6. Si F est un corps infini, le morphisme naturel en
homologie

H,(GL(Il,F),Z) > H,(GL(I+1,F),Z) ,
est un isomorphisme pour [ > n.

I1 serait intéressant de retrouver ce résultat de facon géométrique a ’aide de
ce qui précede.
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