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274 J,-L. CATHELINEAU

(Xuo, ...,Xun). Pour l'acyclicité, on remarque que si d(Yti(vl0,..., vln)) 0,
on peut choisir un vecteur v de F(N) indépendant de tous les ulj et alors on
vérifie que ...,uln) d(Y,i(v9vl0, ...,uln)). Pour terminer la preuve,
il suffit d'observer que le complexe des coinvariants de (2), sous l'action de

Z[FX], s'identifie au complexe (1); cela résulte du fait que les orbites
de sous l'action de Fx sont en bijection naturelle avec les éléments de

&n; en effet à l'orbite de l'élément (u0, ul, un) e &n est associé le

n-repère projectif image de (u0,ui, ...9un> £>/) Par PI inversement soit un
repère projectif (x0, X\,*.., xni to) et soit Dt la droite au-dessus de x-t et À
celle au-dessus de co, ce repère provient de l'orbite de (u0, vx, un), où les

Vi sont les éléments de la décomposition d'un vecteur de la droite A dans la
somme directe des Dx.

Le groupe projectif GP(F(N)) opère dans le complexe (1) par

f(x0,xi, (/(x0),/(*i),
L'action induite en homologie est triviale. Cela résulte d'un argument standard

d'algèbre homologique (voir par exemple [2]); en effet cette action provient,

par passage aux coinvariants, d'une action de GL(F{N)) dans la
résolution (2), action qui est triviale sur Z et coïncide avec l'action diagonale

sur les éléments de ; noter que cette action commute avec celle de Z [F x ].

3.2 Homologie du groupe linéaire et grassmanniennes infinies

On va esquisser une description géométrique analogue pour l'homologie
du groupe linéaire GL(l,F) en utilisant les considérations du paragraphe 2.

Relativement à la grassmannienne G des sous-espaces de dimension

/ - 1 de P°°(F), on peut définir des groupoïdes ^oo,/ et analogues
à ^foo et ^ Pour n > 0, &ln désigne l'ensemble des (n + 2)-uplets

(X0,Xi, Xn, Y) d'éléments de Gœ l(F) tels que n + 1 d'entre eux soient

en position générale dans P°°(F) et Y est contenu dans le sous-espace
< X0, X1, Xn >: ces (n + 2)-uplets jouent le rôle des repères projectifs;
on pose de plus &l0 G00'1 (F). On est conduit naturellement à la construction

d'un complexe géométrique

(3) ••• 4. Z{M'n]4z[#!_,] 4 4 Z[^]-0,
dont les groupes d'homologie coïncident avec ceux de GL(l,F). Dans (3),

ï[&ln] est le Z-module libre de générateurs les éléments de et

d= lloi-lVà,. où

0,(^0, ~.,Xn, Y) (X0,
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avec Yi (X0, n < Y,X,).Lethéorème 4 se généralise alors

sous la forme suivante.

Théorème 5. Uhomologie H*(GL(l,F), Z) du groupe linéaire

GL(l,F) est isomorphe à celle du complexe (3).

Preuve. Il suffit encore de remarquer que le complexe (3) s'identifie au

complexe des coinvariants d'une résolution de Z par des Z[GL(l, F)]-modules
libres.

Pour cela, on introduit l'ensemble céyln des

^0 Vl Vn

((l> o 5 •••> t'o)? (^i » • > j V n)) 5

où X}/,y est une famille libre de F(N). Le Z-module libre Z[Wln] est aussi un

Z[GL(l, F)]-module libre pour l'action définie comme suit: si

g (%)i^4i^/ ^ V (ui, ...,^/), on pose g. F=
et On a alors une Z [GL (/, F)]-résolution

acyclique de Z

••• 4 Z[^i] 4. z[^i_,] 4 4 z[U.I 4 Z,
en posant d(V0, L„) V/, V„). Indiquons
comment déln paramétrise les orbites de GL(l,F) dans céln. A l'orbite
de l'élément (V0, Vn) e X correspond l'élément (X0, Xn, Y)
e dé'n défini comme suit: Xt est associé au sous-espace de F(N) engendré

par {pj, ...X} et Y à celui engendré par {E/ 0y/» •••» £7=o^^
Comme au paragraphe précédent, l'action naturelle du groupe projectif

GP(F(N)) dans le complexe (3) induit l'action triviale en homologie.
A.A. Suslin [16] a prouvé le résultat de stabilité suivant

Théorème 6. Si F est un corps infini, le morphisme naturel en

homologie

Hn (GL(l, F), Z) -> Hn (GL(l + 1,F),Z)
est un isomorphisme pour l ^ n.

Il serait intéressant de retrouver ce résultat de façon géométrique à l'aide de

ce qui précède.
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