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270 J.-L. CATHELINEAU

= card (F') + 1 droites distinctes de P2/-1(F) rencontrant X, Y, A, et B,
mais card (P'(F)) > [, par hypothése sur F. Il en résulte que f est diago-
nalisable et que les x; sont en position générale dans X, car les D; sont en
somme directe.

On peut aussi montrer que les birapports o; donc aussi les ¢; carac-
térisent, dans la situation ci-dessus, la configuration X, Y, A, B & trans-
formation projective prés.

3. HOMOLOGIE DU GROUPE LINEAIRE ET GEOMETRIE PROJECTIVE

3.1 HOMOLOGIE DU GROUPE MULTIPLICATIF D’UN CORPS ET ESPACE
PROJECTIF INFINI

A la place des configurations de Menelaiis, on aurait pu utiliser dans
la définition du groupoide ¥, les configurations de Ceva comme sur la
figure 8.

X Cc z

FIGURE 8

On rappelle que le théoréme de Ceva exprime le fait que les droites (x, b),

(y,cy et (z,a) de la figure 8 sont concourrantes par la condition affine
o
ay bz cx :

DEFINITION 5. On note ¥, le groupoide ainsi obtenu.

Le groupoide ¢ est isomorphe a ¥,. L’isomorphisme avec 77, est
d’ailleurs plus naturel que son analogue pour ¥,. Si F est de caracté-
ristique 2, on a 1’égalité &/ = &,; en effet les points a, b, ¢ de la figure 8
sont alors alignés et dans ce cas les configurations de Menelaiis et celles de
Ceva coincident. Noter aussi que sans hypothése sur F, on obtient un
isomorphisme entre ¥, et ¥, en termes de générateurs, en associant au
générateur (x > y) de ¥,, le générateur (xi; y) de &, ou a’ est le
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conjugué harmonique de a par rapport a x et y. Que cette correspondance soit
compatible avec les relations se traduit par la figure 9. Il faut comprendre cette
figure comme suit: si (x,y,a,a’), (x,2,¢,¢') et (y,z,b,b") sont respec-
tivement en division harmonique, alors la configuration des six points
x,¥,2,a,b,c est de Menelaiis si et seulement si la configuration

x,y,z,a’,b’, ¢’ est de Ceva; la preuve est un exercice.
”

a

DEFINITION 6. Soit P*>(F) [’espace projectif associé au F-espace
vectoriel de dimension dénombrable F®™. De maniére analogue a ¢,
on définit un groupoide <, dont les objets sont les points de P = (F).

Ce groupoide est limite inductive des /. Avant d’utiliser ¢/, rappelons
d’abord quelques généralités sur ’homologie des groupoides. A tout groupoide
< et plus généralement a toute petite catégorie, on associe [15] son nerf
¢ qui est un ensemble simplicial. L’ensemble ./, ¢ des n-simplexes
de .7°¢ est formé des suites (f,, f2,..., f») de morphismes dont deux
successifs sont composapies et les opérateurs de faces sont données par

00(f15-0s Ju) = (S oes Sin)
an(fl’ ---yfn) = (fla "'9fn71)
ai(fl)"-sfn):(f19"'afifi+19---afn_1)a pour l=1,,n~1

L’homologie de ¢ est alors I’homologie du complexe
S ZALT) S LA, TS e S 2, F] -0,
ou Z[./, <] est le Z-module libre engendré par les n-simplexes de ¥ et
oud=Y._ (-1)79;.
En particulier, un groupe est un groupoide et on retrouve I’homologie
des groupes au sens usuel [2]. D’autre part, I’injection canonique dans ¢ de
Aut(x), considéré comme groupoide & un seul objet, induit un isomorphisme
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en homologie. En fait Auf(x) est équivalent au sens des catégories au
groupoide ¢': pour voir ce point, on considére un morphisme de grou-
poides & —Aut(x) en choisissant pour tout y un morphisme f,:x — y, et
en associant a g € Aut(y) ’automorphisme de x:fy_1 o go f,; une telle
équivalence induit une équivalence d’homotopie simpliciale sur les nerfs
(voir [15]) d’ou un isomorphisme en homologie.

Revenons au groupoide ¢’ ; quelque soit I’objet x de ¥’ , le groupe
Aut(x) est isomorphe au groupe multiplicatif F*. On va décrire un sous-
complexe du complexe

S LN G D LN LD e B L[N F L]0,
de nature totalement géométrique et dont I’homologie est encore I’homologie

de F*.

DEFINITION 7. On dit qu’un n-simplexe
est générique si ses sommets (Xx;)i-o..n SOnt en position générale dans
P> (F), c’est-a-dire s’ils engendrent un sous-espace projectif de dimen-

sion n.

DEFINITION 8. Pour n> 0, on appelle n-repére projectif de P = (F)

la donnée d’un (n + 2)-uplet (x¢,Xx:,...,X,,®) tel que le sous-espace pro-
Jectif engendré soit de dimension n et tel que les points Xo, X1, ..., Xn, ®
soient en position générale dans <(X¢,X1,...,X,,®). Un O-repere est

constitué d’un point. On note %, [’‘ensemble des n-repéres projectifs
de P>(F).

a

La donnée d’un n-simplexe générique x, - X, € e & X, €équivaut a
celle d’un n-repére projectif de P> (F). La correspondance s’obtient
comme suit: au n-simplexe geénérique X, <% X1 &... & X,, on associe le
n-repére projectif (x¢, X1, ..., X», ®), OU ® est 'intersection des sous-espaces
(A1, X5, cees XnDs X0y @2y X3y ceesXn)yeees X0y, X153y Xn_2,a,y. Inver-
sement au n-repere (Xo, X, ..., X, ®) correspond le n-simplexe générique
X0 & X1 L X,, ou les a; sont définis par

N N\
Ai = X1, X0 N LXQy cees XicyXisy ey Xn, O) .
Dans la correspondance, 1’opérateur de face 9; devient

AN
ai(xO, EXX) xn90)) = (an cees Xiy vees Xpy (D,‘) ’
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ou ®; = {X;,®)Y N (xo,...,/x>,...,x,,>. La figure 10 illustre le cas d’un
2-simplexe.

Xo ®, X

FIGURE 10

Le théoréme suivant donne une description projective de I’homologie du
groupe multiplicatif d’un corps a 1’aide des n-repéres projectifs de P = (F)
(comparer avec [7] et la situation topologique classique [12]).

THEOREME 4. L’homologie du complexe

() RN A AE A I AE AR

ou d= Z?zo(— 1)'0;, et ou 0; est décrit géométriquement comme
ci-dessus, est isomorphe a I’homologie H,.(F*,Z) de F*.

Preuve. On va utiliser la définition algébrique de I’homologie des
groupes (voir [2]). Soit un groupe G et Z[G] ’algébre du groupe G, ’homo-
logie H.(G,Z) s’obtient a partir de n’importe quelle résolution de Z par
des Z[G]-modules projectifs

-->M, > M,_,—> - '—)Mo‘_)Z,
en considérant ’homologie du complexe des «coinvariants»

oM, Q1L > M, _ Qzi1L— > M,z Z .

Soit alors ¢, ’ensemble des (n + 1)-uplets (vg, vy, ...,0,) de vecteurs
indépendants de F™), on considére le complexe
@) e S L[] S 2%, S - S L% S T,

oud= Y (=18, avec d;(Vo, ...s 0,) = (Vo5 ever Dy ooy 0) et (X 1 (1))
= Y n;. Ce complexe est une résolution de Z par des Z[F*]-modules
libres, ou l’action de F* provient de ’action diagonale A.(Voy.eay Uy)
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= (Mg, ..., AV,). Pour Pacyclicité, on remarque que si d(Zi(Uf), 50 =0,
on peut choisir un vecteur v de F®™ indépendant de tous les v ; et alors on
vérifie que ¥, (vg, ...,v5) = d(X,(v, 05, ...,0")). Pour terminer la preuve,
il suffit d’observer que le complexe des coinvariants de (2), sous I’action de
Z[F*], s’identifie au complexe (1); cela résulte du fait que les orbites
de %, sous l’action de F* sont en bijection naturelle avec les éléments de
A,; en effet a V'orbite de I’élément (vy, v, ...,0,) € &, est associé le
n-repére projectif image de (vg, v, ...,0,, Y. U;) par p; inversement soit un
repere projectif (xo, X1, ..., X,, ®) et soit D; la droite au-dessus de x; et A
celle au-dessus de w, ce repere provient de ’orbite de (vo, vy, ..., U,), OU les
v; sont les éléments de la décomposition d’un vecteur de la droite A dans la
somme directe des D;. [

Le groupe projectif GP(F ™) opére dans le complexe (1) par
f(XOaxla sesy xna(’)) = (f(X()), f(xl): seey f(xn)a f((,l))) .

L’action induite en homologie est triviale. Cela résulte d’un argument standard
d’algebre homologique (voir par exemple [2]); en effet cette action provient,
par passage aux coinvariants, d’une action de GL(F™) dans la réso-
lution (2), action qui est triviale sur Z et coincide avec 1’action diagonale
sur les éléments de %, ; noter que cette action commute avec celle de Z[F *].

3.2 HOMOLOGIE DU GROUPE LINEAIRE ET GRASSMANNIENNES INFINIES

On va esquisser une description géométrique analogue pour ’homologie
du groupe linéaire GL (/, F) en utilisant les considérations du paragraphe 2.
Relativement a la grassmannienne G =-/(F) des sous-espaces de dimension
[ —1 de P> (F), on peut définir des groupoides ¥, ; et ¢, , analogues
4 Tn et 0. Pour n>0, %' désigne I’ensemble des (n + 2)-uplets
(Xo, X1, ..., X,, Y) d’éléments de G=/(F) tels que n + 1 d’entre eux soient
en position générale dans P> (F) et Y est contenu dans le sous-espace
(X, X1, ..., X,): ces (n + 2)-uplets jouent le réle des repéres projectifs;
on pose de plus %4 = G=/(F). On est conduit naturellement a la construc-
tion d’un complexe géométrique

d

3) e Sz S 2%l 1S S z[#1 -0,

dont les groupes d’homologie coincident avec ceux de GL(/, F). Dans (3),
Z[{#'] est le Z-module libre de générateurs les éléments de ., et
d= Y, ,(~1)19; ou

8;(Xo, ey X, ¥) = (Xo, oty Xiy ooy X, Y1),
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