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FIGURE 7

Il reste a voir que y respecte les relations. Soit E,, E,, E; en somme
directe et soit de plus u,: E, —> E, et u,:E, — E;; posons pour i =1,2

Ji=A{u;(x) —x:xe€E;}.
Comme
(uz 0 uy) (x) = x = (U2 (w1 (x)) — w1 x) + (u:1(x) = x) ,
on a
{(uou) (x)—x:xeE} C(Li®L)N(E DE,).

L’égalité résulte de 1’égalité des dimensions. [

2.2 INVARIANTS PROJECTIFS DE QUADRUPLETS DE SOUS-ESPACES
DE DIMENSION [/ — 1 DE P~ 1(F)

On peut formuler dans le cadre de ce qui précéde des invariants projectifs
de quatre sous-espaces de dimension / — 1 de P?-!(F) qui généralisent
le birapport de quatre points de P! (F).

Pour cela, revenons au groupoide 77, ,. On considére la réunion
disjointe des groupes d’automorphismes de 77, ,

dimE =1
A:= [l GL(E&E).
E¢C Fn+l
Le groupe linéaire GL (n + 1, F) opére par conjugaison dans A. Pour f € A,
soit

X' —ai(NX'"1+ -+ (=Diai(f),
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son polyndme caractéristique. Les a; sont des fonctions invariantes par
I’action de GL(n + 1, F) sur A. En composant ces fonctions avec I’isomor-
phisme de groupoides du théoréme 3, on obtient pour [>1letn>3-1,

des fonctions c¢; sur
U AwX)

X e Obj(fh’/)
qui sont invariantes par l’action du groupe projectif PGL(n+ 1, F)
sur &, ;.

On en déduit des invariants projectifs qui sont des analogues du
birapport. Par exemple, si X, Y, A, B sont quatre sous-espaces projectifs
de dimension / — 1 de P2/~ 1(F), tels que X, Y, A et X, Y, B soient respecti-
vement en position générale, alors les éléments de F donnés par les
ci((YgX ) o (X 4 Y)) sont des invariants projectifs de la configuration
constituée par ces quatre sous-espaces.

On sait que «en général» (au sens de la géométrie énumérative et pour un
corps algébriquement clos, voir par exemple [6] p. 272 et [11] p. 206),
si X,Y,A,B sont quatre sous-espaces de dimension / — 1 de P2~ !(F)
deux a deux disjoints, il existe exactement / droites (A;); -, ..., de P2/~ 1(F)
qui rencontrent a la fois X, Y, 4 et B.

Supposons que X,Y,A,B soit une telle configuration; notons
X, ¥, a;, b; les points d’intersection respectifs de A; avec X,Y,A
et B, etsoit a; le birapport r(x;,y;;a;, b;). Alors, sile corps F a
au moins 1+ 1 éléments, les a; sont deux a deux distincts et coincident
avec les valeurs propres de (Yg X)o (X 4 Y), d’ou les relations

(Y3 X)o (X5 Y) =00, ),

ou o, deésigne la i-ieme fonction symétrique élémentaire de [ variables.

En effet notons E le sous-espace de dimension / de F'? tel que p(E\{0})
= X dans la projection de F?/\{0} sur P%~1(F); soit D, la droite de E
au-dessus de x;; soit de plus f I’élément de GL(E) correspondant a
(Y—B> X) o (X 4 Y). En reprenant des arguments contenus dans les preuves
des théorémes 2 et 3, on montre qu’une droite vectorielle D de E est une droite
propre de f si et seulement si il existe une droite (unique) A de P2/~ 1(F)
passant par le point x:= p(D\{0}) et rencontrant Y, A, et B; de plus la
valeur propre correspondante est le birapport r(x, y;a, b), ou y,a, b sont
les points d’intersection de A avec Y, A, et B. On voit donc que les a;
sont valeurs propres de f; de plus ces valeurs propres sont deux a
deux distinctes, sinon f admettrait un sous-espace propre de dimension
au moins égale a 2, ce qui entrainerait ’existence d’au moins card (P! (F))
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= card (F') + 1 droites distinctes de P2/-1(F) rencontrant X, Y, A, et B,
mais card (P'(F)) > [, par hypothése sur F. Il en résulte que f est diago-
nalisable et que les x; sont en position générale dans X, car les D; sont en
somme directe.

On peut aussi montrer que les birapports o; donc aussi les ¢; carac-
térisent, dans la situation ci-dessus, la configuration X, Y, A, B & trans-
formation projective prés.

3. HOMOLOGIE DU GROUPE LINEAIRE ET GEOMETRIE PROJECTIVE

3.1 HOMOLOGIE DU GROUPE MULTIPLICATIF D’UN CORPS ET ESPACE
PROJECTIF INFINI

A la place des configurations de Menelaiis, on aurait pu utiliser dans
la définition du groupoide ¥, les configurations de Ceva comme sur la
figure 8.

X Cc z

FIGURE 8

On rappelle que le théoréme de Ceva exprime le fait que les droites (x, b),

(y,cy et (z,a) de la figure 8 sont concourrantes par la condition affine
o
ay bz cx :

DEFINITION 5. On note ¥, le groupoide ainsi obtenu.

Le groupoide ¢ est isomorphe a ¥,. L’isomorphisme avec 77, est
d’ailleurs plus naturel que son analogue pour ¥,. Si F est de caracté-
ristique 2, on a 1’égalité &/ = &,; en effet les points a, b, ¢ de la figure 8
sont alors alignés et dans ce cas les configurations de Menelaiis et celles de
Ceva coincident. Noter aussi que sans hypothése sur F, on obtient un
isomorphisme entre ¥, et ¥, en termes de générateurs, en associant au
générateur (x > y) de ¥,, le générateur (xi; y) de &, ou a’ est le
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