Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 41 (1995)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: BIRAPPORT ET GROUPOÏDES

Autor: Cathelineau, Jean-Louis

Kapitel: 2.2 Invariants projectifs de quadruplets de sous-espaces de dimension

 $I-1 de P^{2I-1}(F)$

DOI: https://doi.org/10.5169/seals-61827

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

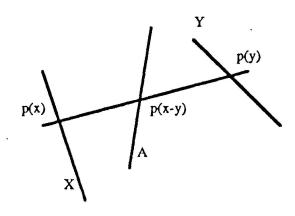


FIGURE 7

Il reste à voir que ψ respecte les relations. Soit E_1 , E_2 , E_3 en somme directe et soit de plus $u_1: E_1 \to E_2$ et $u_2: E_2 \to E_3$; posons pour i = 1, 2

$$J_i = \{u_i(x) - x \colon x \in E_i\} .$$

Comme

$$(u_2 \circ u_1)(x) - x = (u_2(u_1(x)) - u_1x) + (u_1(x) - x),$$

on a

$$\{(u_2 \circ u_1)(x) - x : x \in E_1\} \subset (J_1 \oplus J_2) \cap (E_1 \oplus E_2).$$

L'égalité résulte de l'égalité des dimensions.

2.2 Invariants projectifs de quadruplets de sous-espaces de dimension l-1 de $\mathbf{P}^{2l-1}(F)$

On peut formuler dans le cadre de ce qui précède des invariants projectifs de quatre sous-espaces de dimension l-1 de $\mathbf{P}^{2l-1}(F)$ qui généralisent le birapport de quatre points de $\mathbf{P}^1(F)$.

Pour cela, revenons au groupoïde $\mathcal{V}_{n,l}$. On considère la réunion disjointe des groupes d'automorphismes de $\mathcal{V}_{n,l}$

$$\mathbf{A} := \coprod_{E \subset E^{n+1}}^{\dim E = l} GL(E) .$$

Le groupe linéaire GL(n+1,F) opère par conjugaison dans A. Pour $f \in A$, soit

$$X^{l} - a_{1}(f)X^{l-1} + \cdots + (-1)^{l}a_{l}(f)$$
,

son polynôme caractéristique. Les a_i sont des fonctions invariantes par l'action de GL(n+1,F) sur **A**. En composant ces fonctions avec l'isomorphisme de groupoïdes du théorème 3, on obtient pour $l \ge 1$ et $n \ge 3l-1$, des fonctions c_i sur

 $\coprod_{X \in Obj(\mathcal{S}_{n,l})} Aut(X)$

qui sont invariantes par l'action du groupe projectif PGL(n+1,F) sur $\mathcal{G}_{n,l}$.

On en déduit des invariants projectifs qui sont des analogues du birapport. Par exemple, si X, Y, A, B sont quatre sous-espaces projectifs de dimension l-1 de $\mathbf{P}^{2l-1}(F)$, tels que X, Y, A et X, Y, B soient respectivement en position générale, alors les éléments de F donnés par les $c_i((Y \xrightarrow{B} X) \circ (X \xrightarrow{A} Y))$ sont des invariants projectifs de la configuration constituée par ces quatre sous-espaces.

On sait que «en général» (au sens de la géométrie énumérative et pour un corps algébriquement clos, voir par exemple [6] p. 272 et [11] p. 206), si X, Y, A, B sont quatre sous-espaces de dimension l-1 de $\mathbf{P}^{2l-1}(F)$ deux à deux disjoints, il existe exactement l droites $(\Delta_j)_{j=1,\dots,l}$ de $\mathbf{P}^{2l-1}(F)$ qui rencontrent à la fois X, Y, A et B.

Supposons que X, Y, A, B soit une telle configuration; notons x_j, y_j, a_j, b_j les points d'intersection respectifs de Δ_j avec X, Y, A et B, et soit α_j le birapport $r(x_j, y_j; a_j, b_j)$. Alors, si le corps F a au moins l+1 éléments, les α_j sont deux à deux distincts et coïncident avec les valeurs propres de $(Y \xrightarrow{B} X) \circ (X \xrightarrow{A} Y)$, d'où les relations

$$c_i((Y \xrightarrow{B} X) \circ (X \xrightarrow{A} Y)) = \sigma_i(\alpha_1, \dots, \alpha_l),$$

où σ_i désigne la i-ième fonction symétrique élémentaire de l variables.

En effet notons E le sous-espace de dimension l de F^{2l} tel que $p(E \setminus \{0\})$ = X dans la projection de $F^{2l} \setminus \{0\}$ sur $\mathbf{P}^{2l-1}(F)$; soit D_j la droite de E au-dessus de x_j ; soit de plus f l'élément de GL(E) correspondant à $(Y \xrightarrow{B} X) \circ (X \xrightarrow{A} Y)$. En reprenant des arguments contenus dans les preuves des théorèmes 2 et 3, on montre qu'une droite vectorielle D de E est une droite propre de f si et seulement si il existe une droite (unique) Δ de $\mathbf{P}^{2l-1}(F)$ passant par le point $x := p(D \setminus \{0\})$ et rencontrant Y, A, et B; de plus la valeur propre correspondante est le birapport r(x, y; a, b), où y, a, b sont les points d'intersection de Δ avec Y, A, et B. On voit donc que les α_j sont valeurs propres de f; de plus ces valeurs propres sont deux à deux distinctes, sinon f admettrait un sous-espace propre de dimension au moins égale à 2, ce qui entraînerait l'existence d'au moins $card(\mathbf{P}^1(F))$

= card(F) + 1 droites distinctes de $\mathbf{P}^{2l-1}(F)$ rencontrant X, Y, A, et B, mais $card(\mathbf{P}^1(F)) > l$, par hypothèse sur F. Il en résulte que f est diagonalisable et que les x_j sont en position générale dans X, car les D_j sont en somme directe.

On peut aussi montrer que les birapports α_j donc aussi les c_j caractérisent, dans la situation ci-dessus, la configuration X, Y, A, B à transformation projective près.

3. Homologie du groupe linéaire et géométrie projective

3.1 HOMOLOGIE DU GROUPE MULTIPLICATIF D'UN CORPS ET ESPACE PROJECTIF INFINI

A la place des configurations de Menelaüs, on aurait pu utiliser dans la définition du groupoïde \mathcal{G}_n les configurations de Ceva comme sur la figure 8.

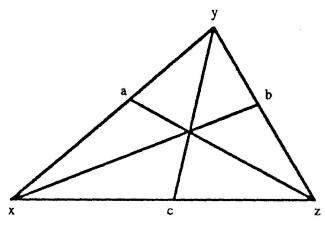


FIGURE 8

On rappelle que le théorème de Ceva exprime le fait que les droites $\langle x, b \rangle$, $\langle y, c \rangle$ et $\langle z, a \rangle$ de la figure 8 sont concourrantes par la condition affine $\frac{ax}{ay} \frac{by}{bz} \frac{cz}{cx} = -1$.

DÉFINITION 5. On note \mathcal{G}'_n le groupoïde ainsi obtenu.

Le groupoïde \mathscr{G}'_n est isomorphe à \mathscr{G}_n . L'isomorphisme avec \mathscr{V}_n est d'ailleurs plus naturel que son analogue pour \mathscr{G}_n . Si F est de caractéristique 2, on a l'égalité $\mathscr{G}'_n = \mathscr{G}_n$; en effet les points a, b, c de la figure 8 sont alors alignés et dans ce cas les configurations de Menelaüs et celles de Ceva coïncident. Noter aussi que sans hypothèse sur F, on obtient un isomorphisme entre \mathscr{G}_n et \mathscr{G}'_n , en termes de générateurs, en associant au générateur $(x \xrightarrow{a} y)$ de \mathscr{G}_n , où a' est le