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au-dessus de x, y,a,b tels que X + ¥ =a et b = AX + ¥, alors ¢(f)(X)
= @(h)(—y) = AX, donc @(f) est la multiplication par A. D’autre part
A =r(x,y;a,b); en effet si on envoie x a l’infini et si on prend y pour
origine de la droite affine ainsi obtenue, les coordonnées de a et b sont respecti-
vement 1 et A, mais r(o0,0;1,1) = A.
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FIGURE 6

Pour achever la preuve, montrons que ¢ : Aut(x) = Aut (@ (x)) est injec-
tive. Notons (x, y; a, b) ’automorphisme de x: (y 4 x) © (x > ), et prou-
vons que si r(x,y;a,b) =r(x,y";a’,b’), alors (x,y;a,b) = (x,y";a’,b’).
On peut supposer que a # b et a’ # b’. Si x,y,y’ ne sont pas alignés,
par ’invariance projective du birapport I’égalité r(x, y; a,b) = r(x,y";a’, b")
entralne que les droites (y,y’), (a,a’) et {(b,b’) sont concourrantes.
Mais alors en utilisant les relations de définition de ¥, , on a successivement

' SBx)o(x2y) o2 =0 5x)0@3y)=(>x),

ce qui montre que (x,y";a’, b))~ o (x,y;a,b) = id,. Si enfin, x, y, y’ sont
alignés, on applique deux fois ce qui précede en considérant y’’ en dehors
de la droite {x,y) et a”,b"” sur la droite {(x,y"") tels que r(x,y;a,b)
=r(x,y”;a”,b"). L

2. GROUPOIDES ET GRASSMANNIENNES

2.1 PRESENTATION PAR GENERATEURS ET RELATIONS

On se propose de généraliser ce qui précede aux groupoides 77, ; de la
définition 1 et aux grassmanniennes.

DEFINITION 3. Pour n >3- 1, on note 7!

.1 le groupoide décrit
par générateurs et relations comme Suit.
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i) Les objets de 7, , sont les mémes que ceux de 7 .

ii) Les générateurs sont les isomorphismes linéaires E, > E, ou E,
et E, sont transverses.

iii) Si % désigne la composition des morphismes dans 7, ;, les
relations sont du type: v % u =00 u, chaque fois que E, 5 E, et
E, > E; sont deux isomorphismes tels que E,,E, et E; soient
en somme directe.

DEFINITION 4. Pour n = 31— 1, on introduit un troisieme groupoide
.1, défini en terme de la géométrie de P"(F) comme suit.

i) Les objets de <, , sont les sous-espaces projectifs de dimension
| — 1 de l’espace projectif P"(F).

ii) Les générateurs sont de la forme: f = (X 4 Y) ou X,Y,A sont
trois sous-espaces de dimension | —1 de P"(F), 2 a 2 disjoints
et AC(X,YY=P2-U(F); ic (X,Y) désigne le sous-espace
projectif engendré par X U Y.

N B

iii) Les relations sont du type go f=h, ou f= (Xg Y), g=(Y—2)
et h= (Xg Z) sont tels que dim{(X,Y,Z)=31—-1 et ou
C=<(X,Z) n (A, B).

THEOREME 3. Pour n >31—1, les groupoides 7 ,, et <&, , sont
isomorphes.

Cela résulte de deux propositions.

PROPOSITION 2. Quelque soit n >3- 1, le morphisme naturel
7= 7w, est un isomorphisme.

PROPOSITION 3. Pour n >31—1, les groupoides 7, , et %,
sont naturellement isomorphes.

Preuve de la proposition 2. Le morphisme naturel 7", , — 77, est
bijectif sur les objets. Le point crucial est de voir qu’il est bijectif sur les
automorphismes. Noter que 77, , est connexe car, étant donnés deux
sous-espaces E, et E, de dimension / de F7*!, il en existe un troisiéme
qui leur est transverse. Si E, = E, est un générateur de 7 n.1> linverse

de u dans 77, , coincide avec I'inverse u~! de u dans 77, ;. En effet soit
v .. , ’ .
E, = E; avec E,, E, et E; en position générale, on a successivement

Wxuy,xul=Woukxu'=@Wouou-lt=y.
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Tout morphisme E — E’ dans 77, , s’écrit comme une composition
u,*u,_l* ‘% U

E=E,>E —~ - —>E_|3E =E’,

ou E; et E;,, sont transverses. Un tel morphisme a un représentant de
la forme

E—-H-FE",

ou H est transverse & £ et E’.
Il suffit de le prouver pour » = 3. Dans ce cas particulier, on a I’assertion
suivante quelque soit le corps F':

LEMME 1. Dans la situation ci-dessus ou r =3, il existe H de
dimension [ tel que H,E,,E,,H,E,,E, et H,E,,E, soient respec-
tivement en somme directe.

Reportons la preuve du lemme et soit w: E, > H, si on pose v = u; © w~!
et u = wo u,ou;, on a les relations

U3*UZ*U1ZU3*(W-1*W)*U2*U1
=(Uskxw D hk(Wkhkuy)ku;))=w;ow" Y, wWou,ou)=v%u,

d’ou la réduction.
Soit maintenant un diagramme

ou u, u’, v et v’ sont des générateurs de 7, ;. Il reste a montrer que, si
2T

un tel diagramme commute dans 77, ;, alors il commute aussi dans 7", ,.
Si E, H et H’ sont en somme directe, on a successivement

uxu t'=wou"H=@Q tov)y=v""1%v,

. . \ uII ’y v’
d’oul v’ % u’ = v % u. Sinon on considere £ — H'" — E de telle sorte que
v’ ou”=vou avec E, H, H"' et E, H', H” en somme directe, et on
applique deux fois ce qui précéde. [




BIRAPPORT ET GROUPOIDES 267

Preuve du lemme 1. Soient V,=E,®E,, V,=E ®E, et
Vs =E,® E;, on veut trouver un sous-espace de dimension / de F"+!
transverse aux V;. En considérant un sous-espace £ de F”*+! de dimension 3/
contenant V,, on se ramene facilement au cas ou dim(V, + V, + V3) < 31
On peut alors écrire

Vit Vot V=V, @850 T @ T5,

ou SCVinVy,, T\ CV,, T; C V3 et T, (resp. T3) est transverse a V;
(resp. V). Soit a =dimS, B, =dimT, et B; = dimT5, il suffit alors de
trouver un sous-espace H' de V; + V, + V3 de dimension o + B, + B3
transverse a chacun des V;.

On a les inégalités o + B; < /et o + B, < /; par suite, il existe des sous-
espaces, en somme directe, 7 et S* de E, (resp. 75 et S de E;) vérifiant
les conditions: dimT| = B, dimT; = B3, dimS’ = dimS”" =a, (T{® S')
NV, ={0}et(T;®S")n V; ={0}.

Soit alors S un sous-espace de S@® S’ @® S, de dimension o, trans-
verse a S@AS, S®S” et '@ S”. Soit de méme Tl (resp. f}) un
sous-espace de T} @ T; (resp. T3 @ T3) de dimension B, (resp. B3)
transverse a 7, et T; (resp. T; et 7). La somme directe S @ f’l @ T3 est
le sous-espace H' cherché. [

Preuve de la proposition 3. Soit p:F*+1\{0} > P"(F) la projec-
tion, on considére la bijection y:O0bj(¥; ) = Obj(¥%,,) donnée par
V(E) = p(EN{0}). On va prolonger v en une bijection notée aussi y de
ensemble des générateurs de 7, , sur ’ensemble des générateurs de G
respectant les relations.

Si u: E— H est un générateur de 7,1 le sous-espace J = {u(x) — x:
x € E} de F7+! est de dimension / car E n H = {0}. Posons alors

VESH) =X5Y,

ou X = p(EN{0}), Y =p(H\{0}) et A = p(J\{0}). Cette application est
bijective; on a en effet

VXS Y) = p (X)L p- (Y,

ou pour x e p~!(X),u(x) est I'unique élément y de p-1(Y) tel que
p(y —x) € A: noter qu’il existe une unique droite projective A passant par
p(x) et rencontrant 4 et Y. Lorsque / = 2, penser a la surface réglée
engendrée par trois droites en position générale.

b LS R T S RS NN
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FIGURE 7

Il reste a voir que y respecte les relations. Soit E,, E,, E; en somme
directe et soit de plus u,: E, —> E, et u,:E, — E;; posons pour i =1,2

Ji=A{u;(x) —x:xe€E;}.
Comme
(uz 0 uy) (x) = x = (U2 (w1 (x)) — w1 x) + (u:1(x) = x) ,
on a
{(uou) (x)—x:xeE} C(Li®L)N(E DE,).

L’égalité résulte de 1’égalité des dimensions. [

2.2 INVARIANTS PROJECTIFS DE QUADRUPLETS DE SOUS-ESPACES
DE DIMENSION [/ — 1 DE P~ 1(F)

On peut formuler dans le cadre de ce qui précéde des invariants projectifs
de quatre sous-espaces de dimension / — 1 de P?-!(F) qui généralisent
le birapport de quatre points de P! (F).

Pour cela, revenons au groupoide 77, ,. On considére la réunion
disjointe des groupes d’automorphismes de 77, ,

dimE =1
A:= [l GL(E&E).
E¢C Fn+l
Le groupe linéaire GL (n + 1, F) opére par conjugaison dans A. Pour f € A,
soit

X' —ai(NX'"1+ -+ (=Diai(f),
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