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20 R. GEOGHEGAN AND A. NICAS

indeed by [GNi, Proposition 5.7], for odd p, r is cyclic of order 2p2. The

proof there also shows that 2[yXA] is of order p2 and that p[yo,p] is of
order 2 in T, so [72,2+^2] generates T.

(D) The projective plane

We saw that when X is aspherical and %(X) =£ 0 then T 0 and so our
first order invariants vanish. In the presence of non-trivial higher homotopy
these invariants need not vanish, despite %(X) =£ 0, as demonstrated by the

example of the real projective plane X P2.
Write G nx (P2) Z/2; denote the generator of G by t. Give P2

the customary cell structure consisting of one cell in each of dimensions

0, 1, and 2. The universal cover P2 is naturally identified with S2 and
the corresponding cellular chain complex is:

C2(S2)1+- lC0(S2)

Every element of T can be represented by a basepoint preserving
homotopy F: P2 x I -» P2 with F0 Fl \dPi. We have F0 Fx id52

because the basepoint is preserved. It is easy to verify that the
corresponding chain homotopy D* : C*(S2) -> C*(S2) is then zero on C0(S2)
and takes ex to ë2m{l-t~l) where m e Z. By elementary obstruction

theory, there exists F F{m) realizing any me Z. In this case

trace(6 (x) D) — (1 + t~x) ® 1 - t~l) which is homologous to the
canonical form mt~l (x) tt~l - mt~l (x) tt~2. Since %(P2) 1 0,

the Gottlieb group ri#(T) ^(P2) 0 and so the derivation Xx(P2) is a

homomorphism and need not be distinguished from its cohomology class

Xi(P2) e7/1(r,iT//1(Z(Z/2))) Hom(T, i/i/j (Z(Z/2))). It follows that

Xi(P2) ([FW]) (m, - m) e Z/2 © Z/2 HHx{Z(Z/2))

In particular, when m is odd Xi(F2) ([F^]) ^ 0. On the other hand, this

shows %\(P2) 0.

4. S^Fibrations

In this section we investigate the first order Euler characteristic of the

total space of an orientable Serre fibration with Sl-fiber.
Let S1 -> X B be an orientable Serre fibration where B is a (not

necessarily finite) connected CW complex and X has the homotopy type
of a finite complex. By classical obstruction theory, fiber homotopy
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equivalence classes of orientable S'-fibrations over a CW complex B

are classified by the integral cohomology group Given an

element e e H2(B;Z)[B,CP"]one obtains a principal t/(l)-bundle

over B by pulling back, via a continuous map B CP°° representing e,

the £/(l)-bundle associated to the canonical complex line bundle over the

infinite dimensional complex projective space CP00. Thus we can assume,

without loss of generality, that S1 X A B is a principal U(l)-bundle.

In particular, there is a free U(l)-action on X which we will write

as Let t e T (%(X), 1) be the element represented

by O (O <Î>T in the notation of §1). For any coefficient ring P,

let {r} e Hx{X\R) denote the image of t under the composite:

T ^ Tii(X) - H\(X) -> H\(X\ R)

Also, let eR be the image of the element eeH2(B; Z) which classifies

S1 -> X B under the homomorphism H2(B; Z) H2(B; R).

Lemma 4.1. If F is a field, then { t } e Hx(X\ F) A non-zero if and

only if eF 0.

Proof. Consider the Gysin homology sequence for the fibration
Sl -+X^B:

>H2(B;F)'^nif0(5;F)^//1(Ar;F)^tf1OB;F)->0

Since H2(B; F) ^ H0(B; F) F is just evaluation of the cohomology
class eF on homology, 0O is non-zero if and only if eF 0. Let u e X be a

basepoint and let {71(F)} e H0(B;¥) be the generator determined by the
inclusion of n(u) into B. The fact that 90({^}) - follows from the

naturality of the Gysin sequence homology sequence, by mapping the Gysin
sequence of the trivial fibration S1 -» Sl -> 71(F), via the homomorphism
induced by inclusion, into the Gysin sequence for S1 X B.

Theorem 4.2. Let ¥ be a field. If eF * 0 then %i{X;Y) (t) 0.

If eF — 0 then //*(P;F) is finite dimensional over F and %i(A;F)(t)
-%(B; F){t} where %(B; F) Ef>0(- lVdim^*; F).

Proof. In this proof, all homology and cohomology groups will have
coefficients in the field F. Since B is the orbit space of the U(l)-action
on X given by <E>, there is a commutative square:

XxS1$ X
re x id I 71 I

5x5' ^ B
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where p: B x S1 B is projection. This square induces a commutative ladder
mapping the Gysin homology sequence of S1 -+ X x S1 n^ld B x S1 to the

Gysin homology sequence of S1 - X ^ B :

HiiBxS1) ^ Hi+l(XxSl)("^d>*Hi+1(B X S1) -+ x S1)

| P* J, P* j
//,(£) - Hi+l(X)-+1 (5) //,_,(!?)

For each integer 0 ^ i ^ dimX choose a basis {Z?i, b1^.} for Ht{X) such

that for some integer ra,- < $i{blm.+ p ^ß.} is a basis for the kernel of
7z*: Hi(X)Hi(B). The corresponding dual basis for H'(X) will be

denoted by {b \, b1^.}. Since we are using coefficients in a field, we
make the identifications H*(B x S1) H*(B) g H*(Sl) and H*(X x S1)

H* (X) g (51) via the natural isomorphism given by the homology
exterior product. Let u e HX{SX) be the generator determined by the
standard orientation of Sl. Using Definition Bx,

X,(X;F)(x)= £ (-1)*+1 £
* ^ 0 y - 1

Consider b)g u e Hi+l(X x Sl) where rrit + 1 ^ y ^ ß,. Since lies in
ker 7i%, the exactness of the Gysin sequence implies that blj g u Q'(c g u)
for some c e Hi(B). Consequently,

® m) O*(0'(c(x) «)) 0(p*(c(x) 0

because p*(cg u) 0. It follows that

mk

(4.3) Xi(X;¥) (t) £ (-1)^' £
k ^ 0 y 1

For each k, the set {7t^ (b\),..., n* (bkmk)} is a basis for the image of
7i% : Hk(X) -> Hk{B). Extend this set (in any manner) to basis for Hk{B) and

let {ti* (b\), 7i* (bkm )} denote the corresponding portion of the dual

basis for Hk(B). Then b) =« n* (n*(bf)), 0 ^ j < mk. Consider the

commutative diagram:
(;t X id)*

Hk(BxSl)->X S1)

p* î t* Î
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Then, for 0 ^ j < mki

bj n <b*(bj0 u)<M<I>*(bj) n ®

<$>*(<&* (n*(n*{bkjj)) n

«D*((71 x id)*(p* n (b- uj)
using the above diagram

O* ((bj (x) 1) n (ft* ® u))

0*((èf n ft*) ®u) 0*(M ® u) {t}
where {i>} is the natural generator of H0(X) determined by the inclusion of

the basepoint v into X. From the proof of Lemma 4.1, 0*({f} ® u) {x}.
Substituting the above computation into Formula 4.3 yields %i(X;F)(t)

("Lk> o(- 1 )k+lmk) {t}. If e¥ ± 0 then Lemma 4.1 implies that {t} 0

and so %i(X; F) (x) 0. Thus the conclusion of the theorem is valid in this

case. If eF 0 then from the portion

Hk(X) ^ Hk(B) Tr" Hk.2(B)

of the Gysin homology sequence we deduce that n * is onto and consequently

mk dimF Hk(B, F). Thus dimFif*(5,F) is finite and 0(- 1) * +1 mk

-X(B; F).

Theorem 4.2 can be used to recalculate %\(X\ F) in Examples 3.8 and 3.9.

Next, we consider integer coefficients. Suppose that Sl - X B is a

smooth orientable (7(l)-bundle over a smooth, closed, oriented manifold B.

Let X be the one dimensional subbundle of the tangent bundle of X consisting
of vectors which are tangent to the circle fibers and let be v be a complementary
bundle to X. Then v n*(TB) where TB is the tangent bundle of B.
Let [B] g Hn(B;Z) be the fundamental class of B where n dim B. The
Euler class, Eul(v) g Hn(X; Z), is given by

Eul(v) Eul(7r*(T5)) 7i* (Eul(T5)) x(£)n *([£]*)
where [B]* e Hn(B; Z) is the generator determined by the condition
[B] *([5]) 1; see [MS, Corollary 11.12]. The Gysin homology sequence
for S1 XB determines a fundamental class for X; [X] eHn + x(X) is

the image of [5] under the homomorphism 0„: Hn(B; Z) -> Hn + (X; Z).
For any closed oriented ra-dimensional manifold M, let PDm\H1(M)

Hm _ ; (M) be the Poincaré duality isomorphism explicitly given by
PDm(x) (- l)'^-')* n [M] where x e Hl(M) and [M] e Hm(M) is the
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fundamental class ((- l)'(-') appears because of our use of Dold's sign

conventions). An immediate consequence of Theorem 3.1 of [GN2] is the

following computation of %\(X) (with integer coefficients):

Theorem 4.4. %x{X) (x) - PDx(Eul(v)).

Theorem 4.5. Under the above hypotheses, %i(X) (x) - %(B) {x}.

Proof. There is a Poincaré duality isomorphism between the Gysin

homology sequence and the Gysin cohomology sequence, a portion of which
is shown below:

H0(B; Z) - Hi (X ; Z) ^ H{(B;Z)

pdb Î pd* I PDb f

Hn(B; Z) ^ H»(X;Z) - H"~l(B;Z)
Let v e X be a basepoint, and let {7i(u)} e H0(B; Z) be the generator
determined by the inclusion of 7z(v) into B. From the above diagram,
PD^(7t* ([£]*)) 00({7i(u)}). Also, from the proof of Lemma 4.1,
9o({tc(^)}) {t}. Thus PD^(Eul(v)) %(B){x }. Regarding the free

£/(l)-action on A" as a flow, we can now invoke Theorem 4.4 to conclude

that x(5){t} -XiWW-
Example 4.6. Let be a closed oriented surface of genus g > 1 and

let Ln be a complex line bundle over with Chern number n. Let MHyg

be the total space of the £7(1)-bundle associated to Ln. Then MU}g is a

closed oriented aspherical 3-manifold which fibers over The center of
7i] (M„tg) is the infinite cyclic group generated by x (represented by a

circle fiber); the image, {x}, of x in Hi(Mn g) Z2g © Z/n generates the

Z/n summand. By Theorem 4.5, %i (M„tg): Z -> Hx is given by

Xi (Mn,g) (x) (2g — 2) {x}.

Let Tn, where n > 1, be the «-torus (i.e. the «-fold product of copies

of t/(l)). Let Abe a closed oriented smooth manifold and let p : Tn x X X
be a smooth free action of Tn. This action defines a homomorphism

p : Tn Diff (X) where Diff (X) is the diffeomorphism group of X.
Let Tp C T be the image of the composite:

UiiT",1) ^ 71, (Diff(X), id) -> 7i,(f(X),id) r
Proposition 4.7. The restriction of %i(X): T - HfX) to Tp is

the zero homomorphism.
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Proof: Since n > 1, if T C Tn is a circle subgroup then %(X/T) 0.

Applying Theorem 4.5 to the bundle T X-+ X/T yields the

conclusion.

Corollary 4.8. If n > 1 then %i(Tn): Zn 7/1 is zero.

5. A HIGHER ANALOG OF GOTTLIEB'S THEOREM

Let G be a group of type JC Gottlieb's theorem (see Propositions 1.3

and 2.4) asserts that if %(G) ± 0 then Z(G), the center of G, is trivial. We

prove an analogous theorem for %i(G; Q): if %i(G; Q) ^ 0 then the center

of G is infinite cyclic provided G satisfies an extra hypothesis (explained below)

related to the Bass Conjecture; see Proposition 5.2 and Theorem 5.4.

Throughout this section R will be a commutative ground ring. Let S be

any associative R-algebra with unit. The Hochschild homology group
HHq(S) is the R-module S/[S,S] where [S, S] is the R-submodule of S

generated by {ab - ba \ a, b e S}; see §2. Recall that K0(S) is the abelian

group F/A where F is the free abelian group generated by the set of
all isomorphism classes [.M] of finitely generated projective right S-modules

MC ©°°= i S and A is the subgroup of F generated by relations of the form

[Mi © M2] - [Mi] - [M2]. Since a finitely generated projective module is

the image of a finitely generated free module under an idempotent
homomorphism, each element of K0(S) can be represented by an idempotent
matrix over S. The Hattori-Stallings trace T0: K0(S) HH0(S) is defined
as follows. Let A : M -> M be an idempotent endomorphism of a free, finitely
generated right S-module M representing x e K0(S). If [A] is the matrix
of A with respect to a given basis for M then T0(x) is defined to be

T0([A]) eHHo(S).
Consider the groupring, RG, of a group G over R. Then HH0(RG)

is naturally isomorphic to the free TGmodule generated by Gi, the set

of conjugacy classes of G (see §2 for an explanation in the case R Z).
Recall that for g e G we write C(g) e Gi for the conjugacy class of g,
HH0(RG)c(g) for the summand of HH0(RG) corresponding to C(g)
and xC(g) for the C(g)-component of a e HH0(RG). Also write HH0(RG)

HH0(RG)c(l) © HH0(RG)' where 1 e G is the identity element of G,
and HHq(RG)' is the direct sum of the remaining summands. The
augmentation homomorphism s: RG -> R induces a homomorphism
s* : HH0(.RG) -> HH0(R) R.
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