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20 R. GEOGHEGAN AND A. NICAS

indeed by [GN,, Proposition 5.7], for odd p, T is cyclic of order 2p?. The
proof there also shows that 2[y, ;] is of order p? and that p[y,, ,] is of
order 2 in I', so [y, .. ,2] generates I'.

(D) THE PROJECTIVE PLANE

We saw that when X is aspherical and y(X) # 0 then I' = 0 and so our
first order invariants vanish. In the presence of non-trivial higher homotopy
these invariants need not vanish, despite % (X) # 0, as demonstrated by the
example of the real projective plane X = P2.

Write G = nn;(P?) = Z/2; denote the generator of G by ¢. Give P2
the customary cell structure consisting of one cell in each of dimen-
sions 0, 1, and 2. The universal cover P2 is naturally identified with S? and
the corresponding cellular chain complex is:

1+¢-1 r—1—1
C2(S?) = Ci(SH) — Co(SY) .
Every element of I' can be represented by a basepoint preserving
homotopy F:P2?x I— P2 with F, = F, = idp.. We have F, = F, = ids
because the basepoint is preserved. It is easy to verify that the corres-
ponding chain homotopy ﬁ*;c*(gz)_) C«(S?) is then zero on Cy(S?)
and takes e; to e,m(l1 —¢-!') where m € Z. By elementary obstruc-
tion theory, there exists F = F(" realizing any m e Z. In this case
trace(é & [)) ={1+¢t")Y®mA~-1¢t"1) which is homologous to the
canonical form mt- '@ tt-!' —mt-1®¢r=2. Since yP?*) =1=%0,
the Gottlieb group M, () = Z(P2) = 0 and so the derivation X 1(P?) is a
homomorphism and need not be distinguished from its cohomology class
Yi(P?) e H(I',HH,(Z(Z/2))) = Hom(T', HH,(Z(Z/2))). It follows that

(P (Fm) =(m, —m)eZ/2®Z/2=HH (Z(Z/2)) .

In particular, when m is odd %, (P2?) ([F]) # 0. On the other hand, this
shows y;(P?) = 0.

4. S'-FIBRATIONS

In this section we investigate the first order Euler characteristic of the
total space of an orientable Serre fibration with S!-fiber.

Let S! > X > B be an orientable Serre fibration where B is a (not
necessarily finite) connected CW complex and X has the homotopy type
of a finite complex. By classical obstruction theory, fiber homotopy
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equivalence classes of orientable S!-fibrations over a CW complex B
are classified by the integral cohomology group H2*(B;Z). Given an
element e € H2(B;Z) = [B,CP*] one obtains a principal U(1)-bundle
over B by pulling back, via a continuous map B — CP> representing e,
the U(1)-bundle associated to the canonical complex line bundle over the
infinite dimensional complex projective space CP=. Thus we can assume,
without loss of generality, that S! =X % B is a principal U(1)-bundle.
In particular, there is a free U(1)-action on X which we will write
as ®: X x S!—> X. Let t el =m,(4(X),1) be the element represented
by ® (® = ®° in the notation of §1). For any coefficient ring R,
let {r} € H,(X; R) denote the image of T under the composite:

5 (X)— H(X)—~ H(X;R) .

Also, let er be the image of the element e € H?(B;Z) which classifies
S!'— X 5 B under the homomorphism H2(B; Z) = H*(B; R).

LEMMA 4.1. If F isa field, then {t} e H,(X;F¥) is non-zero if and
only if ep = 0.

Proof. Consider the Gysin homology sequence for the fibration
S!— X5 B:

e N

. 0 n
+ > H,(B;F) = Ho(B;F) = H,(X; F) S H{(B; F) > 0 .

FMN

Since H,(B; F) e—> Hy(B;F)=F is just evaluation of the cohomology
class ey on homology, 0, is non-zero if and only if eg = 0. Let v € X be a
basepoint and let {n(v)} € Hy(B; F) be the generator determined by the
inclusion of w(v) into B. The fact that 6,({v}) = {t} follows from the
naturality of the Gysin sequence homology sequence, by mapping the Gysin
sequence of the trivial fibration S!— S!— n(v), via the homomorphism
induced by inclusion, into the Gysin sequence for S! > X > B. [

THEOREM 4.2. Let ¥ be a field. If ey #0 then x,(X;F) (1) =0.
If exr =0 then H.(B;F) is finite dimensional over F and vy,(X;F) (1)
= —x(B;F) {t} where x(B;F)= Y, ,(— 1) dimsH;(B;F).

Proof. In this proof, all homology and cohomology groups will have

coefficients in the field F. Since B is the orbit space of the U(1)-action
on X given by ®, there is a commutative square:

xXxSs 3 x

nxidl nl

BxS' 5 B
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where p: B X S! — B is projection. This square induces a commutative ladder

mapping the Gysin homology sequence of S! = X x S! "54B % S! to the
Gysin homology sequence of S! = X = B:
, (n x id)
H/BxS') % H. (XxS) =" H.,(BxS) - H_(BxS)
Py | @y | Py | Pyl
H@B) > H.,X) 2  H.® 5 H_®

For each integer 0 < i < dim X choose a basis {5, ..., by } for H;(X) such
that for some integer m; < Bi{bjmﬂ, oo é,—} is a basis for the kernel of
nyw: H;(X) = H;(B). The corresponding dual basis for H/(X) will be
denoted by {b', ...,l;éi}. Since we are using coefficients in a field, we
make the identifications H,(B X S!) = H,(B) ® H.(S!) and H.(X X S!)
= H.(X) ® Hy«(S') via the natural isomorphism given by the homology
exterior product. Let u € H,(S') be the generator determined by the

standard orientation of S!. Using Definition B;,

Bk
LXH (=Y (D' Y bEnabf®u).

k>0 j=1
Consider bj- @ ue H; (XxS8!) where m; + 1 <Jj < B;. Since bj- lies in
ker 4, the exactness of the Gysin sequence implies that b J' RKu=0"(c®u)
for some ¢ € H;(B). Consequently,

D, (b;®@u) =0, (0 (c®u) =0(ps(c®u)) =0
because ps(c @ u) = 0. It follows that

n _
(4.3) LG (D= Y (DY bin 0y (b ®u) .
k>0 j=1
For each k, the set {n*(b’f), ...,n*(bﬁk)} is a basis for the image of
ns: Hy(X) = H,(B). Extend this set (in any manner) to basis for H,(B) and
let {m4(b%), ..., ms(b% )} denote the corresponding portion of the dual
basis for H*(B). Then b} = n*(n4(b¥)),0<j< m,. Consider the
commutative diagram:
HBxSY) "5 Hekx x S
p* T (I)* T

H*(B) 5 HY(X) .
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Then, for 0 < j < my,
bY@y (b @ u) = @4 (O* (D)) N (b @ u)
= @, (@*(n* (n4 (bD))) N (b ® u))

= @, ((n x id)* (p* (n« (D)) N (b} @ u))
using the above diagram

=0, (b} ® 1) N (0] @ u)
=0, ((bf n b)) ®u) = ®x ({0} @ u) = {1}

where {v} is the natural generator of Hy(X) determined by the inclusion of
the basepoint v into X. From the proof of Lemma 4.1, ®, ({v} ® u) = {7}.
Substituting the above computation into Formula 4.3 yields ¥ (X; F) (1)
= (Tiso(—D¥*tmy) {t}. If e # 0 then Lemma 4.1 implies that {t} =0
and so y,(X;F) (1) = 0. Thus the conclusion of the theorem is valid in this
case. If er = 0 then from the portion

e M

Ho(X) = He(B) ™S Hi_,(B)

of the Gysin homology sequence we deduce that 7, is onto and consequently
my = dimg H; (B, F). Thus dimg Hy (B, F) is finite and Y, (= D) *1my
= —yB;F. U

Theorem 4.2 can be used to recalculate y; (X; F) in Examples 3.8 and 3.9.

Next, we consider integer coefficients. Suppose that S! > X > B is a
smooth orientable U(1)-bundle over a smooth, closed, oriented manifold B.
Let A be the one dimensional subbundle of the tangent bundle of X consisting
of vectors which are tangent to the circle fibers and let be v be a complementary
bundle to A. Then v = n*(Tp) where T is the tangent bundle of B.
Let [B] € H,(B; Z) be the fundamental class of B where n = dim B. The
Euler class, Eul(v) € H"(X; Z), is given by

Eul(v) = Eul(n*(T5)) = n*(Bul(T3)) = x(B)n*([B]*)

where [B]* € H"(B;Z) is the generator determined by the condition
[B1*([B]) = 1; see [MS, Corollary 11.12]. The Gysin homology sequence
for S' > X 5 B determines a fundamental class for X ; (X1e H, (X)) is
the image of [B] under the homomorphism 0,: H,(B;Z) = H,. (X; Z).
For any closed oriented m-dimensional manifold M, let PD,: H (M)
— H,_;(M) be the Poincaré duality isomorphism explicitly given by
PDuy(x) = (= 1)!"=9x n [M] where x € H'(M) and [M] € H,,(M) is the
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fundamental class ((— 1)/0"-9 appears because of our use of Dold’s sign
conventions). An immediate consequence of Theorem 3.1 of [GN,] is the
following computation of %, (X) (with integer coefficients):

THEOREM 4.4. y,(X) (1) = — PDy(Eul(v)). [

THEOREM 4.5. Under the above hypotheses, 7y;(X) (1) = —x(B) {1}.

Proof. There is a Poincaré duality isomorphism between the Gysin
homology sequence and the Gysin cohomology sequence, a portion of which
is shown below:

b T

Ho(B;Z) - H,(X;Z) - H(B;Z)

PDg 1 PDx 1 PDp |

T*

Hr"B:;Z) S Hr(X;Z) - H"(B;Z)

Let v € X be a basepoint, and let {n(v)} € Hy(B;Z) be the generator
determined by the inclusion of m(v) into B. From the above diagram,
PDx(n*([B1*)) = 0,({n(v)}). Also, from the proof of Lemma 4.1,
Bo({m(v)}) = {t}. Thus PDx(Eul(v)) = x(B){t}. Regarding the free
U(1)-action on X as a flow, we can now invoke Theorem 4.4 to conclude
that x(B) {t} = — 1 (X)(v). I

Example 4.6. Let ¥, be a closed oriented surface of genus g > 1 and
let L, be a complex line bundle over Y, with Chern number n. Let M, ,
be the total space of the U(l)-bundle associated to L,. Then M, , is a
closed oriented aspherical 3-manifold which fibers over } ,. The center of
n,(M, ,) is the infinite cyclic group generated by t (represented by a
circle fiber); the image, {t}, of T in H,(M,, ,) = Z?*¢ ® Z/n generates the
Z/n summand. By Theorem 4.5, %, (M, ,):Z— H,(M,,,) is given by
0 (M) (1) = g — 2) {1} |

Let T, where n > 1, be the n-torus (i.e. the n-fold product of copies
of U(1)). Let X be a closed oriented smooth manifold and let p: 7" X X = X
be a smooth free action of 7. This action defines a homomorphism
p: T"— Diff (X) where Diff(X) is the diffeomorphism group of X.
Let Iy C I' be the image of the composite:

7 (T7, 1) 3 1, (Diff (X), id) - 7, (%(X),id) = T .

PROPOSITION 4.7. The restriction of x,(X): I = H,(X) to T, is
the zero homomorphism.
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Proof. Since n > 1, if T C T” is a circle subgroup then v(X/T) =0.
Applying Theorem 4.5 to the bundle T—->X—X/T yields the con-
clusion. [

COROLLARY 4.8. If n>1 then x,(T"):Z"—Z" iszero. [

5. A HIGHER ANALOG OF GOTTLIEB’S THEOREM

Let G be a group of type .7. Gottlieb’s theorem (see Propositions 1.3
and 2.4) asserts that if 1 (G) # 0 then Z(G), the center of G, is trivial. We
prove an analogous theorem for yx,(G; Q): if x:(G; Q) # O then the center
of Gis infinite cyclic provided G satisfies an extra hypothesis (explained below)
related to the Bass Conjecture; see Proposition 5.2 and Theorem 5.4.

Throughout this section R will be a commutative ground ring. Let S be
any associative R-algebra with unit. The Hochschild homology group
HH,(S) is the R-module S/[S, S] where [S, S] is the R-submodule of §
generated by {ab — ba|a, b € S}; see §2. Recall that Ko(S) is the abelian
group F/A where F is the free abelian group generated by the set of
all isomorphism classes [M] of finitely generated projective right S-modules
M C @7, S and A is the subgroup of F generated by relations of the form
M, ® M,] — [M,] — [M,]. Since a finitely generated projective module is
the image of a finitely generated free module under an idempotent homo-
morphism, each element of K,(S) can be represented by an idempotent
matrix over S. The Hattori-Stallings trace Ty: Ko(S) > HH(S) is defined
as follows. Let A: M — M be an idempotent endomorphism of a free, finitely
generated right S-module M representing x € Ky(S). If [A] is the matrix
of A with respect to a given basis for M then T,(x) is defined to be
To([A]) € HH,(S).

Consider the groupring, RG, of a group G over R. Then HH,(RG)
is naturally isomorphic to the free R-module generated by G;, the set
of conjugacy classes of G (see §2 for an explanation in the case R = Z).
Recall that for g € G we write C(g) € G, for the conjugacy class of g,
HHy(RG)cy for the summand of HH (RG) corresponding to C(g)
and xc¢(,) for the C(g)-component of x € HH,(RG). Also write HHy(RG)
= HHy(RG)cy ® HHy(RG)" where 1 € G is the identity element of G,
and HH,(RG)" is the direct sum of the remaining summands. The
augmentation homomorphism €:RG — R induces a homomorphism
ex: HHy(RG) > HH,(R) = R.
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