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262 J.-L.. CATHELINEAU

L’associativité, dans le cas de trois morphismes ou les objets sont en
position générale, correspond a la configuration de Desargues de la figure 4.
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FIGURE 4

Rappelons le théoréme de Desargues: si x,y,z et x’,y’,z’ sont deux
triangles de l’espace projectif P*(F), ou n > 2, tels que x et x’, y et y’,
z et z’ soient distincts, alors les points (x,y)> N {(x", ¥">, <y, 2> n {y', 2"
et (x,z) N {(x’,z’y sont alignés, si et seulement si les droites {x,x"),
(y,y") et {(z,z") sont concourrantes.

1.3 PREUVE DU THEOREME 2

Dans toute la suite, on note p ’application quotient F7*1\{0} - P"(F).

On va construire un morphisme de groupoides ¢: ¢, = 7,, bijectif
sur les ensembles d’objets. Pour prouver que ¢ est un isomorphisme, il
suffira de vérifier que les morphismes induits Aut(x) = Aut(p(x)) sont
des isomorphismes pour tout x de P"(F).

On note ¢(x) la droite p~1(x). Si f = (x> y) est un générateur de
¢,, on définit @ (f) comme I’isomorphisme linéaire: p~1(x) = p~1(y),
dont le graphe est la droite conjuguée harmonique de p ~'(a) par rapport
a p-(x) et p~'(y); autrement dit, @ (f) est caractéris¢ par le fait que
pour un vecteur non nul X € p~1(x), ¢(f) (X) — X appartient & p~1(a).

Pour voir que ces données induisent un morphisme ¢:¥%,—> 7,
vérifions la comptabilité avec les relations . Soit f, g, A comme sur la
figure 1, on a

O X)) —Xepa) et 9@ e(f)X) - o(fH(X)ep'(D),
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donc (9(g) © ®(f)) (X) — X appartient a 'intersection des deux plans
(p~"a),p= 1 (b)) n{p~1(x),p 1 (2)) =p~'(c),

ce qui prouve que ¢ (g © f) = ¢(g) © 0 (f).
Il reste a voir que les morphismes Aut(x)— Aut(p(x)) induits par

0: %, 7, sont des isomorphismes. Cela se fait en plusieurs étapes.

Si x #y, Dlinverse de f = (x—>y) est représenté par g = (y 5 X).
En effet soit z en dehors de la droite <x,y) et A = (x—c> z), il suffit de
vérifier que Ao (g o f) = h, ce qui apparait sur la figure 5 qui montre
une construction géométrique de (k2 © g) o f.
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FIGURE 5

L’étape suivante consiste a prouver que tout automorphisme de x
dans ¢, est représenté par une composée (y—b>x) o(x>y), ou x # y.
Par définition de ¥,, tout morphisme de x est représenté par un «chemin»

ag aj An—1
Xg=FX] = = X,
Montrons que le composé d’un tel chemin est égal au composé de deux
générateurs. Il suffit de considérer la situation ou n = 3; soit alors z en
dehors des droites {(xo,x1), {(X1,X2) et {x,,Xx3) (voir aussi le lemme 1
du paragraphe 2.1 pour une situation plus délicate) et soit w sur la droite
{(x1,z), distinct de x; et z; ’associativité de la composition et le fait que
(z > x,) © (x; > z) = id,, montrent que

o) 01 [12 ao ao a a
(23X 2 X2 X3) 0 (Xg > X1 22) = (X0 X1 = X3 X3) ,

ou I’on a identifié une suite de fleches & sa composée. D’autre part le choix
de z et les relations de définition de ¥, montrent que (xofgxl L°>z) et
(z 3 x, 3 x, 3 x3) s’identifient 2 des générateurs de & .

Démontrons mamtenant que, si f € Aut(x) est la composée 4 © g ou
g=x>yet h= y—>x alors ¢ (f) € F* est le birapport r(x, y; a, b) des
quatre points x,y,a,b. On a o(f)=¢(h) o e(g); soit X, ¥, a ,b
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au-dessus de x, y,a,b tels que X + ¥ =a et b = AX + ¥, alors ¢(f)(X)
= @(h)(—y) = AX, donc @(f) est la multiplication par A. D’autre part
A =r(x,y;a,b); en effet si on envoie x a l’infini et si on prend y pour
origine de la droite affine ainsi obtenue, les coordonnées de a et b sont respecti-
vement 1 et A, mais r(o0,0;1,1) = A.
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FIGURE 6

Pour achever la preuve, montrons que ¢ : Aut(x) = Aut (@ (x)) est injec-
tive. Notons (x, y; a, b) ’automorphisme de x: (y 4 x) © (x > ), et prou-
vons que si r(x,y;a,b) =r(x,y";a’,b’), alors (x,y;a,b) = (x,y";a’,b’).
On peut supposer que a # b et a’ # b’. Si x,y,y’ ne sont pas alignés,
par ’invariance projective du birapport I’égalité r(x, y; a,b) = r(x,y";a’, b")
entralne que les droites (y,y’), (a,a’) et {(b,b’) sont concourrantes.
Mais alors en utilisant les relations de définition de ¥, , on a successivement

' SBx)o(x2y) o2 =0 5x)0@3y)=(>x),

ce qui montre que (x,y";a’, b))~ o (x,y;a,b) = id,. Si enfin, x, y, y’ sont
alignés, on applique deux fois ce qui précede en considérant y’’ en dehors
de la droite {x,y) et a”,b"” sur la droite {(x,y"") tels que r(x,y;a,b)
=r(x,y”;a”,b"). L

2. GROUPOIDES ET GRASSMANNIENNES

2.1 PRESENTATION PAR GENERATEURS ET RELATIONS

On se propose de généraliser ce qui précede aux groupoides 77, ; de la
définition 1 et aux grassmanniennes.

DEFINITION 3. Pour n >3- 1, on note 7!

.1 le groupoide décrit
par générateurs et relations comme Suit.
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