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A A

xiyix (resp. yixi;y) par x (resp. y). La composition dans &

. . f
s’obtient en composant les chemins; I’inverse de la classe de x = y est alors

la classe de y EA X.

Le groupoide ¢ se déduit de & en passant au quotient par les relations
Z. Plus précisément, les relations % engendrent une famille de groupes
(G ve x, ou Gy est un sous-groupe de Aut 7 (x), satisfaisant a la condition

(*) pour tout morphisme f:x — y de &, la conjugaison: Aut, = Aut,,
g— fogo f~1, induit une bijection de G, sur G,;
on obtient alors ¢ a partir de & en passant au quotient par la relation
d’équivalence suivante sur les morphismes de &

(+¥) pour f,g e Mor(x,y),f~gsig-lofeG,. U

DEFINITION 1. Pour F uncorpset [>1, 7, désigne le groupoide
dont les objets sont les sous-espaces de dimension [ de F"+! et les
morphismes, les isomorphismes linéaires entre ces espaces. Pour [ =1, on
note plus simplement ce groupoide 7 ,.

Dans les paragraphes 1.2 et 2.1, on donne pour » > 3/ — 1 une présen-
tation par générateurs et relations du groupoide 77, ,, en termes de
géomeétrie projective.

1.2 LE GROUPOIDE DES POINTS DE P” (F)

Dans la suite, F est un corps commutatif quelconque, en particulier on
n’exclut pas le corps a deux éléments.

DEFINITION 2. Pour n > 2, on considere le groupoide <, défini par
générateurs et relations comme Suit:

i) Les objets de &, sont les points de P"(F).

ii) L’ensemble des générateurs .7 est constitué des fleches f = (x = »),
ou x et y sontdes points distincts de P"(F) et a est un point
de la droite {x,y) distinct de x et y.

iii) Les relations 7 sontdutype h=go f ou f=(x—>y), g= (y 5 Z)
et h=(x>2z) sont comme sur la figure 1, c’est-a-dire que x,y
et z sont en position générale et c est I’intersection des droites {x, z)
et (a,b).




260 J.-L. CATHELINEAU

FIGURE 1

Un triangle comme sur la figure 1 est une cubique dégénérée; noter
alors I’analogie avec la définition de la loi de groupe sur une cubique non
singuliere. On peut dire aussi que les relations 77 sont données par les configu-
rations de Menelaiis: rappelons que le théoréme de Menelailis exprime

P’alignement des points a, b, c, sur la figure 1, par la condition affine
ax 9y £2 _ 1
ay bz ¢x

On rappelle que si F a au moins trois éléments et si x, y,a, b sont
quatre points distincts de P"(F) = Fu { o}, il existe un unique élément
r(x,y;a,b) € F* et une unique homographie f € PGL(2, F) tels que

(f(x), f(), f(@), f(D)) = (0,0,1,r(x,y;a,D)) .

L’élément r(x, y; a, b) = == i:i est le birapport des quatre points x, y, a, b;

pour les généralités sur le birapport, voir par exemple [1].

Dans la suite on convient que r(x, y;a,b) =1, si a = b.

Noter que le groupe projectif PGL(n + 1,F) opere naturellement
dans ¥, par automorphismes de groupoides.

THEOREME 1. Le groupoide <, vérifie les propriétés suivantes
1) Pour x+#y, si f=(x=y) alors f~1=(y=>x).

2) Pour x + y,Mor(x,y) coincide avec I’ensemble des générateurs de
source x et de but y.

3) Pour tout x e P"(F), il existe un wunique isomorphisme,
te:Auty (x) = F*, tel que pour f = (x>y) et g=(y -a>x), t.(gof)
=r(x,y;a,b). De plus ces isomorphismes sont compatibles avec [’action
de PGL(n+ 1,F) dans %,.

Ce théoreme est en fait un corollaire du suivant.
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THEOREME 2. Il existe un isomorphisme de groupoides ¢: <, 7,
tel que, pour f=(x—>y) et g=(y 5x), ona ¢(go f)=r(xy;ab).

Avant de montrer ce dernier résultat, donnons deux illustrations géomé-
triques du théoreme 1.

Si f=(x>y) et g= (y > z) sont tels que x,y,z sont distincts et
alignés, alors g o f = (x> z), ou c est le point de {(x,y) obtenu par la
construction géométrique de la figure 2.

xv

FIGURE 2

Détaillons cette construction: on choisit un point x” en dehors de la droite
{(x, y) et un point ® sur la droite {x, x") distinct de x et x’. Le point a corres-
pond alors a la composée f o (x'>x), le point p & go (fo (x' X))
et le point ¢ a

(go(fo(x'>x))o(x>x").

L’associativité du groupoide %, et le point /) du théoréme 1 montrent
que cette derniere composition n’est autre que g © f. Le lecteur pourra
considérer le cas particulier ou F est le corps a deux éléments et constater
que si X, y,z sont les trois points d’une droite de P2(F), on a la relation
(y>2)0(x>y) = (x % z). Rappelons que le plan projectif du corps a
deux éléments est constitué de 7 points et 7 droites disposés comme sur
la figure 3

FIGURE 3
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L’associativité, dans le cas de trois morphismes ou les objets sont en
position générale, correspond a la configuration de Desargues de la figure 4.

hog

y

FIGURE 4

Rappelons le théoréme de Desargues: si x,y,z et x’,y’,z’ sont deux
triangles de l’espace projectif P*(F), ou n > 2, tels que x et x’, y et y’,
z et z’ soient distincts, alors les points (x,y)> N {(x", ¥">, <y, 2> n {y', 2"
et (x,z) N {(x’,z’y sont alignés, si et seulement si les droites {x,x"),
(y,y") et {(z,z") sont concourrantes.

1.3 PREUVE DU THEOREME 2

Dans toute la suite, on note p ’application quotient F7*1\{0} - P"(F).

On va construire un morphisme de groupoides ¢: ¢, = 7,, bijectif
sur les ensembles d’objets. Pour prouver que ¢ est un isomorphisme, il
suffira de vérifier que les morphismes induits Aut(x) = Aut(p(x)) sont
des isomorphismes pour tout x de P"(F).

On note ¢(x) la droite p~1(x). Si f = (x> y) est un générateur de
¢,, on définit @ (f) comme I’isomorphisme linéaire: p~1(x) = p~1(y),
dont le graphe est la droite conjuguée harmonique de p ~'(a) par rapport
a p-(x) et p~'(y); autrement dit, @ (f) est caractéris¢ par le fait que
pour un vecteur non nul X € p~1(x), ¢(f) (X) — X appartient & p~1(a).

Pour voir que ces données induisent un morphisme ¢:¥%,—> 7,
vérifions la comptabilité avec les relations . Soit f, g, A comme sur la
figure 1, on a

O X)) —Xepa) et 9@ e(f)X) - o(fH(X)ep'(D),
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