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BIRAPPORT ET GROUPOIDES

par Jean-Louis CATHELINEAU

Soit F un corps et n un entier supérieur ou égal a 2, on associe a 1’espace
projectif P7(F) un groupoide; ce groupoide, défini par générateurs et
relations de maniére purement géométrique, fait apparaitre tres naturellement
le groupe multiplicatif du corps et le classique birapport. Une structure
analogue existe plus généralement pour les grassmanniennes. Ces considé-
rations ameénent a une présentation géométrique élémentaire de I’homologie
du groupe linéaire en terme de grassmanniennes, en analogie avec la situation
topologique classique, et illustre aussi I’intérét (voir entre autres [3, 10]) de
considérer pour un groupe discret GG, des catégories, autres que la classique
catégorie a un objet, dont le réalisé est aussi un espace d’Eilenberg-Maclane
K (G, 1). Ce qui suit espére montrer la dimension géométrique de ce point
de vue, dans la ligne des idées de F. Klein. On discute aussi quelques extensions
naturelles du birapport pour certaines configurations de points ou de sous-
espaces de ’espace projectif.

Ces résultats m’ont été inspirés par quelques aspects d’un travail de
Goncharov sur la conjecture de Zagier [9, 8, 4].

1. GROUPOIDES ET ESPACES PROJECTIFS

1.1 PRESENTATION D’UN GROUPOIDE PAR GENERATEURS ET RELATIONS

Rappelons qu’une petite catégorie est une catégorie dont les objets forment
un ensemble, et qu’un groupoide est une petite catégorie dont tous les
morphismes sont des isomorphismes. Un groupoide est dit connexe si, entre
deux de ses objets, il existe toujours un morphisme. Dans la suite tous les
groupoides sont supposés connexes. Dans un groupoide, les automorphismes
d’un objet forment un groupe et tous ces groupes d’automorphismes sont
isomorphes. Un groupe s’identifie 3 un groupoide avec un seul objet et
tout groupoide est équivalent, au sens des catégories, a un tel groupoide.
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Mais il faut se garder de croire que la théorie des groupoides se réduit a celle
des groupes. Pour un apercu général sur la théorie des groupoides et leurs
applications on renvoie a ’exposé de R. Brown [3].

Comme la notion de groupoide généralise celle de groupe, il n’est pas
surprenant que l’on puisse présenter un groupoide par générateurs et
relations.

Pour cela considérons les données suivantes

i) un ensemble d’objets X,

i1) un ensemble .# de générateurs donné par des «fléches» f:x — y entre
les €éléments de X,

1i1) un ensemble 7 de relations entre les éléments de .# du type

frofoto o ofit=ide(e;= £1),

ou I’extrémité de la fleche f; coincide avec I’origine de f;. ;.

PROPOSITION 1. [/ existe, a isomorphisme preés, un et un seul groupoide
¢, d’ensemble d’objets X, muni d’une application ¢: .7 — Mor &
compatible avec les objets, satisfaisant de plus a la propriété universelle
suivante:

«Pour tout groupoide 2%, pour toute application h:X — Obj 7,
et pour toute application v :.% — Mor 2# compatible avec h vérifiant:

WS o W(fyo )10 o 0w (fi)® = idyy pour chaque relation
de %, il existe un unique morphisme de groupoides

yv: ¢ > %
tel que
yooh=y.»
Esquissons la preuve: on commence par construire le groupoide

«libre» Z engendré par les données X et .%. Pour ce faire, on introduit
le graphe orienté I' dont les sommets sont les éléments de X et dont les

A

arétes sont de I’un des types x ER youy ER x, pour f:x— y élément de .7
(on suppose que ce graphe est connexe). Le groupoide & a alors pour objets
les éléments de X et, pour morphismes, les classes d’équivalences de chemins
orientés sur le graphe I', relativement a la relation d’équivalence engendrée
par les relations élémentaires suivantes: deux chemins sont élémentairement
équivalents si ’on passe de 'un a l’autre en remplacant une séquence
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A A

xiyix (resp. yixi;y) par x (resp. y). La composition dans &

. . f
s’obtient en composant les chemins; I’inverse de la classe de x = y est alors

la classe de y EA X.

Le groupoide ¢ se déduit de & en passant au quotient par les relations
Z. Plus précisément, les relations % engendrent une famille de groupes
(G ve x, ou Gy est un sous-groupe de Aut 7 (x), satisfaisant a la condition

(*) pour tout morphisme f:x — y de &, la conjugaison: Aut, = Aut,,
g— fogo f~1, induit une bijection de G, sur G,;
on obtient alors ¢ a partir de & en passant au quotient par la relation
d’équivalence suivante sur les morphismes de &

(+¥) pour f,g e Mor(x,y),f~gsig-lofeG,. U

DEFINITION 1. Pour F uncorpset [>1, 7, désigne le groupoide
dont les objets sont les sous-espaces de dimension [ de F"+! et les
morphismes, les isomorphismes linéaires entre ces espaces. Pour [ =1, on
note plus simplement ce groupoide 7 ,.

Dans les paragraphes 1.2 et 2.1, on donne pour » > 3/ — 1 une présen-
tation par générateurs et relations du groupoide 77, ,, en termes de
géomeétrie projective.

1.2 LE GROUPOIDE DES POINTS DE P” (F)

Dans la suite, F est un corps commutatif quelconque, en particulier on
n’exclut pas le corps a deux éléments.

DEFINITION 2. Pour n > 2, on considere le groupoide <, défini par
générateurs et relations comme Suit:

i) Les objets de &, sont les points de P"(F).

ii) L’ensemble des générateurs .7 est constitué des fleches f = (x = »),
ou x et y sontdes points distincts de P"(F) et a est un point
de la droite {x,y) distinct de x et y.

iii) Les relations 7 sontdutype h=go f ou f=(x—>y), g= (y 5 Z)
et h=(x>2z) sont comme sur la figure 1, c’est-a-dire que x,y
et z sont en position générale et c est I’intersection des droites {x, z)
et (a,b).
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FIGURE 1

Un triangle comme sur la figure 1 est une cubique dégénérée; noter
alors I’analogie avec la définition de la loi de groupe sur une cubique non
singuliere. On peut dire aussi que les relations 77 sont données par les configu-
rations de Menelaiis: rappelons que le théoréme de Menelailis exprime

P’alignement des points a, b, c, sur la figure 1, par la condition affine
ax 9y £2 _ 1
ay bz ¢x

On rappelle que si F a au moins trois éléments et si x, y,a, b sont
quatre points distincts de P"(F) = Fu { o}, il existe un unique élément
r(x,y;a,b) € F* et une unique homographie f € PGL(2, F) tels que

(f(x), f(), f(@), f(D)) = (0,0,1,r(x,y;a,D)) .

L’élément r(x, y; a, b) = == i:i est le birapport des quatre points x, y, a, b;

pour les généralités sur le birapport, voir par exemple [1].

Dans la suite on convient que r(x, y;a,b) =1, si a = b.

Noter que le groupe projectif PGL(n + 1,F) opere naturellement
dans ¥, par automorphismes de groupoides.

THEOREME 1. Le groupoide <, vérifie les propriétés suivantes
1) Pour x+#y, si f=(x=y) alors f~1=(y=>x).

2) Pour x + y,Mor(x,y) coincide avec I’ensemble des générateurs de
source x et de but y.

3) Pour tout x e P"(F), il existe un wunique isomorphisme,
te:Auty (x) = F*, tel que pour f = (x>y) et g=(y -a>x), t.(gof)
=r(x,y;a,b). De plus ces isomorphismes sont compatibles avec [’action
de PGL(n+ 1,F) dans %,.

Ce théoreme est en fait un corollaire du suivant.
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THEOREME 2. Il existe un isomorphisme de groupoides ¢: <, 7,
tel que, pour f=(x—>y) et g=(y 5x), ona ¢(go f)=r(xy;ab).

Avant de montrer ce dernier résultat, donnons deux illustrations géomé-
triques du théoreme 1.

Si f=(x>y) et g= (y > z) sont tels que x,y,z sont distincts et
alignés, alors g o f = (x> z), ou c est le point de {(x,y) obtenu par la
construction géométrique de la figure 2.

xv

FIGURE 2

Détaillons cette construction: on choisit un point x” en dehors de la droite
{(x, y) et un point ® sur la droite {x, x") distinct de x et x’. Le point a corres-
pond alors a la composée f o (x'>x), le point p & go (fo (x' X))
et le point ¢ a

(go(fo(x'>x))o(x>x").

L’associativité du groupoide %, et le point /) du théoréme 1 montrent
que cette derniere composition n’est autre que g © f. Le lecteur pourra
considérer le cas particulier ou F est le corps a deux éléments et constater
que si X, y,z sont les trois points d’une droite de P2(F), on a la relation
(y>2)0(x>y) = (x % z). Rappelons que le plan projectif du corps a
deux éléments est constitué de 7 points et 7 droites disposés comme sur
la figure 3

FIGURE 3
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L’associativité, dans le cas de trois morphismes ou les objets sont en
position générale, correspond a la configuration de Desargues de la figure 4.

hog

y

FIGURE 4

Rappelons le théoréme de Desargues: si x,y,z et x’,y’,z’ sont deux
triangles de l’espace projectif P*(F), ou n > 2, tels que x et x’, y et y’,
z et z’ soient distincts, alors les points (x,y)> N {(x", ¥">, <y, 2> n {y', 2"
et (x,z) N {(x’,z’y sont alignés, si et seulement si les droites {x,x"),
(y,y") et {(z,z") sont concourrantes.

1.3 PREUVE DU THEOREME 2

Dans toute la suite, on note p ’application quotient F7*1\{0} - P"(F).

On va construire un morphisme de groupoides ¢: ¢, = 7,, bijectif
sur les ensembles d’objets. Pour prouver que ¢ est un isomorphisme, il
suffira de vérifier que les morphismes induits Aut(x) = Aut(p(x)) sont
des isomorphismes pour tout x de P"(F).

On note ¢(x) la droite p~1(x). Si f = (x> y) est un générateur de
¢,, on définit @ (f) comme I’isomorphisme linéaire: p~1(x) = p~1(y),
dont le graphe est la droite conjuguée harmonique de p ~'(a) par rapport
a p-(x) et p~'(y); autrement dit, @ (f) est caractéris¢ par le fait que
pour un vecteur non nul X € p~1(x), ¢(f) (X) — X appartient & p~1(a).

Pour voir que ces données induisent un morphisme ¢:¥%,—> 7,
vérifions la comptabilité avec les relations . Soit f, g, A comme sur la
figure 1, on a

O X)) —Xepa) et 9@ e(f)X) - o(fH(X)ep'(D),
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donc (9(g) © ®(f)) (X) — X appartient a 'intersection des deux plans
(p~"a),p= 1 (b)) n{p~1(x),p 1 (2)) =p~'(c),

ce qui prouve que ¢ (g © f) = ¢(g) © 0 (f).
Il reste a voir que les morphismes Aut(x)— Aut(p(x)) induits par

0: %, 7, sont des isomorphismes. Cela se fait en plusieurs étapes.

Si x #y, Dlinverse de f = (x—>y) est représenté par g = (y 5 X).
En effet soit z en dehors de la droite <x,y) et A = (x—c> z), il suffit de
vérifier que Ao (g o f) = h, ce qui apparait sur la figure 5 qui montre
une construction géométrique de (k2 © g) o f.

hog

FIGURE 5

L’étape suivante consiste a prouver que tout automorphisme de x
dans ¢, est représenté par une composée (y—b>x) o(x>y), ou x # y.
Par définition de ¥,, tout morphisme de x est représenté par un «chemin»

ag aj An—1
Xg=FX] = = X,
Montrons que le composé d’un tel chemin est égal au composé de deux
générateurs. Il suffit de considérer la situation ou n = 3; soit alors z en
dehors des droites {(xo,x1), {(X1,X2) et {x,,Xx3) (voir aussi le lemme 1
du paragraphe 2.1 pour une situation plus délicate) et soit w sur la droite
{(x1,z), distinct de x; et z; ’associativité de la composition et le fait que
(z > x,) © (x; > z) = id,, montrent que

o) 01 [12 ao ao a a
(23X 2 X2 X3) 0 (Xg > X1 22) = (X0 X1 = X3 X3) ,

ou I’on a identifié une suite de fleches & sa composée. D’autre part le choix
de z et les relations de définition de ¥, montrent que (xofgxl L°>z) et
(z 3 x, 3 x, 3 x3) s’identifient 2 des générateurs de & .

Démontrons mamtenant que, si f € Aut(x) est la composée 4 © g ou
g=x>yet h= y—>x alors ¢ (f) € F* est le birapport r(x, y; a, b) des
quatre points x,y,a,b. On a o(f)=¢(h) o e(g); soit X, ¥, a ,b
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au-dessus de x, y,a,b tels que X + ¥ =a et b = AX + ¥, alors ¢(f)(X)
= @(h)(—y) = AX, donc @(f) est la multiplication par A. D’autre part
A =r(x,y;a,b); en effet si on envoie x a l’infini et si on prend y pour
origine de la droite affine ainsi obtenue, les coordonnées de a et b sont respecti-
vement 1 et A, mais r(o0,0;1,1) = A.

c

yd

X a b y

FIGURE 6

Pour achever la preuve, montrons que ¢ : Aut(x) = Aut (@ (x)) est injec-
tive. Notons (x, y; a, b) ’automorphisme de x: (y 4 x) © (x > ), et prou-
vons que si r(x,y;a,b) =r(x,y";a’,b’), alors (x,y;a,b) = (x,y";a’,b’).
On peut supposer que a # b et a’ # b’. Si x,y,y’ ne sont pas alignés,
par ’invariance projective du birapport I’égalité r(x, y; a,b) = r(x,y";a’, b")
entralne que les droites (y,y’), (a,a’) et {(b,b’) sont concourrantes.
Mais alors en utilisant les relations de définition de ¥, , on a successivement

' SBx)o(x2y) o2 =0 5x)0@3y)=(>x),

ce qui montre que (x,y";a’, b))~ o (x,y;a,b) = id,. Si enfin, x, y, y’ sont
alignés, on applique deux fois ce qui précede en considérant y’’ en dehors
de la droite {x,y) et a”,b"” sur la droite {(x,y"") tels que r(x,y;a,b)
=r(x,y”;a”,b"). L

2. GROUPOIDES ET GRASSMANNIENNES

2.1 PRESENTATION PAR GENERATEURS ET RELATIONS

On se propose de généraliser ce qui précede aux groupoides 77, ; de la
définition 1 et aux grassmanniennes.

DEFINITION 3. Pour n >3- 1, on note 7!

.1 le groupoide décrit
par générateurs et relations comme Suit.
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i) Les objets de 7, , sont les mémes que ceux de 7 .

ii) Les générateurs sont les isomorphismes linéaires E, > E, ou E,
et E, sont transverses.

iii) Si % désigne la composition des morphismes dans 7, ;, les
relations sont du type: v % u =00 u, chaque fois que E, 5 E, et
E, > E; sont deux isomorphismes tels que E,,E, et E; soient
en somme directe.

DEFINITION 4. Pour n = 31— 1, on introduit un troisieme groupoide
.1, défini en terme de la géométrie de P"(F) comme suit.

i) Les objets de <, , sont les sous-espaces projectifs de dimension
| — 1 de l’espace projectif P"(F).

ii) Les générateurs sont de la forme: f = (X 4 Y) ou X,Y,A sont
trois sous-espaces de dimension | —1 de P"(F), 2 a 2 disjoints
et AC(X,YY=P2-U(F); ic (X,Y) désigne le sous-espace
projectif engendré par X U Y.

N B

iii) Les relations sont du type go f=h, ou f= (Xg Y), g=(Y—2)
et h= (Xg Z) sont tels que dim{(X,Y,Z)=31—-1 et ou
C=<(X,Z) n (A, B).

THEOREME 3. Pour n >31—1, les groupoides 7 ,, et <&, , sont
isomorphes.

Cela résulte de deux propositions.

PROPOSITION 2. Quelque soit n >3- 1, le morphisme naturel
7= 7w, est un isomorphisme.

PROPOSITION 3. Pour n >31—1, les groupoides 7, , et %,
sont naturellement isomorphes.

Preuve de la proposition 2. Le morphisme naturel 7", , — 77, est
bijectif sur les objets. Le point crucial est de voir qu’il est bijectif sur les
automorphismes. Noter que 77, , est connexe car, étant donnés deux
sous-espaces E, et E, de dimension / de F7*!, il en existe un troisiéme
qui leur est transverse. Si E, = E, est un générateur de 7 n.1> linverse

de u dans 77, , coincide avec I'inverse u~! de u dans 77, ;. En effet soit
v .. , ’ .
E, = E; avec E,, E, et E; en position générale, on a successivement

Wxuy,xul=Woukxu'=@Wouou-lt=y.
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Tout morphisme E — E’ dans 77, , s’écrit comme une composition
u,*u,_l* ‘% U

E=E,>E —~ - —>E_|3E =E’,

ou E; et E;,, sont transverses. Un tel morphisme a un représentant de
la forme

E—-H-FE",

ou H est transverse & £ et E’.
Il suffit de le prouver pour » = 3. Dans ce cas particulier, on a I’assertion
suivante quelque soit le corps F':

LEMME 1. Dans la situation ci-dessus ou r =3, il existe H de
dimension [ tel que H,E,,E,,H,E,,E, et H,E,,E, soient respec-
tivement en somme directe.

Reportons la preuve du lemme et soit w: E, > H, si on pose v = u; © w~!
et u = wo u,ou;, on a les relations

U3*UZ*U1ZU3*(W-1*W)*U2*U1
=(Uskxw D hk(Wkhkuy)ku;))=w;ow" Y, wWou,ou)=v%u,

d’ou la réduction.
Soit maintenant un diagramme

ou u, u’, v et v’ sont des générateurs de 7, ;. Il reste a montrer que, si
2T

un tel diagramme commute dans 77, ;, alors il commute aussi dans 7", ,.
Si E, H et H’ sont en somme directe, on a successivement

uxu t'=wou"H=@Q tov)y=v""1%v,

. . \ uII ’y v’
d’oul v’ % u’ = v % u. Sinon on considere £ — H'" — E de telle sorte que
v’ ou”=vou avec E, H, H"' et E, H', H” en somme directe, et on
applique deux fois ce qui précéde. [
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Preuve du lemme 1. Soient V,=E,®E,, V,=E ®E, et
Vs =E,® E;, on veut trouver un sous-espace de dimension / de F"+!
transverse aux V;. En considérant un sous-espace £ de F”*+! de dimension 3/
contenant V,, on se ramene facilement au cas ou dim(V, + V, + V3) < 31
On peut alors écrire

Vit Vot V=V, @850 T @ T5,

ou SCVinVy,, T\ CV,, T; C V3 et T, (resp. T3) est transverse a V;
(resp. V). Soit a =dimS, B, =dimT, et B; = dimT5, il suffit alors de
trouver un sous-espace H' de V; + V, + V3 de dimension o + B, + B3
transverse a chacun des V;.

On a les inégalités o + B; < /et o + B, < /; par suite, il existe des sous-
espaces, en somme directe, 7 et S* de E, (resp. 75 et S de E;) vérifiant
les conditions: dimT| = B, dimT; = B3, dimS’ = dimS”" =a, (T{® S')
NV, ={0}et(T;®S")n V; ={0}.

Soit alors S un sous-espace de S@® S’ @® S, de dimension o, trans-
verse a S@AS, S®S” et '@ S”. Soit de méme Tl (resp. f}) un
sous-espace de T} @ T; (resp. T3 @ T3) de dimension B, (resp. B3)
transverse a 7, et T; (resp. T; et 7). La somme directe S @ f’l @ T3 est
le sous-espace H' cherché. [

Preuve de la proposition 3. Soit p:F*+1\{0} > P"(F) la projec-
tion, on considére la bijection y:O0bj(¥; ) = Obj(¥%,,) donnée par
V(E) = p(EN{0}). On va prolonger v en une bijection notée aussi y de
ensemble des générateurs de 7, , sur ’ensemble des générateurs de G
respectant les relations.

Si u: E— H est un générateur de 7,1 le sous-espace J = {u(x) — x:
x € E} de F7+! est de dimension / car E n H = {0}. Posons alors

VESH) =X5Y,

ou X = p(EN{0}), Y =p(H\{0}) et A = p(J\{0}). Cette application est
bijective; on a en effet

VXS Y) = p (X)L p- (Y,

ou pour x e p~!(X),u(x) est I'unique élément y de p-1(Y) tel que
p(y —x) € A: noter qu’il existe une unique droite projective A passant par
p(x) et rencontrant 4 et Y. Lorsque / = 2, penser a la surface réglée
engendrée par trois droites en position générale.

b LS R T S RS NN
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FIGURE 7

Il reste a voir que y respecte les relations. Soit E,, E,, E; en somme
directe et soit de plus u,: E, —> E, et u,:E, — E;; posons pour i =1,2

Ji=A{u;(x) —x:xe€E;}.
Comme
(uz 0 uy) (x) = x = (U2 (w1 (x)) — w1 x) + (u:1(x) = x) ,
on a
{(uou) (x)—x:xeE} C(Li®L)N(E DE,).

L’égalité résulte de 1’égalité des dimensions. [

2.2 INVARIANTS PROJECTIFS DE QUADRUPLETS DE SOUS-ESPACES
DE DIMENSION [/ — 1 DE P~ 1(F)

On peut formuler dans le cadre de ce qui précéde des invariants projectifs
de quatre sous-espaces de dimension / — 1 de P?-!(F) qui généralisent
le birapport de quatre points de P! (F).

Pour cela, revenons au groupoide 77, ,. On considére la réunion
disjointe des groupes d’automorphismes de 77, ,

dimE =1
A:= [l GL(E&E).
E¢C Fn+l
Le groupe linéaire GL (n + 1, F) opére par conjugaison dans A. Pour f € A,
soit

X' —ai(NX'"1+ -+ (=Diai(f),
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son polyndme caractéristique. Les a; sont des fonctions invariantes par
I’action de GL(n + 1, F) sur A. En composant ces fonctions avec I’isomor-
phisme de groupoides du théoréme 3, on obtient pour [>1letn>3-1,

des fonctions c¢; sur
U AwX)

X e Obj(fh’/)
qui sont invariantes par l’action du groupe projectif PGL(n+ 1, F)
sur &, ;.

On en déduit des invariants projectifs qui sont des analogues du
birapport. Par exemple, si X, Y, A, B sont quatre sous-espaces projectifs
de dimension / — 1 de P2/~ 1(F), tels que X, Y, A et X, Y, B soient respecti-
vement en position générale, alors les éléments de F donnés par les
ci((YgX ) o (X 4 Y)) sont des invariants projectifs de la configuration
constituée par ces quatre sous-espaces.

On sait que «en général» (au sens de la géométrie énumérative et pour un
corps algébriquement clos, voir par exemple [6] p. 272 et [11] p. 206),
si X,Y,A,B sont quatre sous-espaces de dimension / — 1 de P2~ !(F)
deux a deux disjoints, il existe exactement / droites (A;); -, ..., de P2/~ 1(F)
qui rencontrent a la fois X, Y, 4 et B.

Supposons que X,Y,A,B soit une telle configuration; notons
X, ¥, a;, b; les points d’intersection respectifs de A; avec X,Y,A
et B, etsoit a; le birapport r(x;,y;;a;, b;). Alors, sile corps F a
au moins 1+ 1 éléments, les a; sont deux a deux distincts et coincident
avec les valeurs propres de (Yg X)o (X 4 Y), d’ou les relations

(Y3 X)o (X5 Y) =00, ),

ou o, deésigne la i-ieme fonction symétrique élémentaire de [ variables.

En effet notons E le sous-espace de dimension / de F'? tel que p(E\{0})
= X dans la projection de F?/\{0} sur P%~1(F); soit D, la droite de E
au-dessus de x;; soit de plus f I’élément de GL(E) correspondant a
(Y—B> X) o (X 4 Y). En reprenant des arguments contenus dans les preuves
des théorémes 2 et 3, on montre qu’une droite vectorielle D de E est une droite
propre de f si et seulement si il existe une droite (unique) A de P2/~ 1(F)
passant par le point x:= p(D\{0}) et rencontrant Y, A, et B; de plus la
valeur propre correspondante est le birapport r(x, y;a, b), ou y,a, b sont
les points d’intersection de A avec Y, A, et B. On voit donc que les a;
sont valeurs propres de f; de plus ces valeurs propres sont deux a
deux distinctes, sinon f admettrait un sous-espace propre de dimension
au moins égale a 2, ce qui entrainerait ’existence d’au moins card (P! (F))
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= card (F') + 1 droites distinctes de P2/-1(F) rencontrant X, Y, A, et B,
mais card (P'(F)) > [, par hypothése sur F. Il en résulte que f est diago-
nalisable et que les x; sont en position générale dans X, car les D; sont en
somme directe.

On peut aussi montrer que les birapports o; donc aussi les ¢; carac-
térisent, dans la situation ci-dessus, la configuration X, Y, A, B & trans-
formation projective prés.

3. HOMOLOGIE DU GROUPE LINEAIRE ET GEOMETRIE PROJECTIVE

3.1 HOMOLOGIE DU GROUPE MULTIPLICATIF D’UN CORPS ET ESPACE
PROJECTIF INFINI

A la place des configurations de Menelaiis, on aurait pu utiliser dans
la définition du groupoide ¥, les configurations de Ceva comme sur la
figure 8.

X Cc z

FIGURE 8

On rappelle que le théoréme de Ceva exprime le fait que les droites (x, b),

(y,cy et (z,a) de la figure 8 sont concourrantes par la condition affine
o
ay bz cx :

DEFINITION 5. On note ¥, le groupoide ainsi obtenu.

Le groupoide ¢ est isomorphe a ¥,. L’isomorphisme avec 77, est
d’ailleurs plus naturel que son analogue pour ¥,. Si F est de caracté-
ristique 2, on a 1’égalité &/ = &,; en effet les points a, b, ¢ de la figure 8
sont alors alignés et dans ce cas les configurations de Menelaiis et celles de
Ceva coincident. Noter aussi que sans hypothése sur F, on obtient un
isomorphisme entre ¥, et ¥, en termes de générateurs, en associant au
générateur (x > y) de ¥,, le générateur (xi; y) de &, ou a’ est le
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conjugué harmonique de a par rapport a x et y. Que cette correspondance soit
compatible avec les relations se traduit par la figure 9. Il faut comprendre cette
figure comme suit: si (x,y,a,a’), (x,2,¢,¢') et (y,z,b,b") sont respec-
tivement en division harmonique, alors la configuration des six points
x,¥,2,a,b,c est de Menelaiis si et seulement si la configuration

x,y,z,a’,b’, ¢’ est de Ceva; la preuve est un exercice.
”

a

DEFINITION 6. Soit P*>(F) [’espace projectif associé au F-espace
vectoriel de dimension dénombrable F®™. De maniére analogue a ¢,
on définit un groupoide <, dont les objets sont les points de P = (F).

Ce groupoide est limite inductive des /. Avant d’utiliser ¢/, rappelons
d’abord quelques généralités sur ’homologie des groupoides. A tout groupoide
< et plus généralement a toute petite catégorie, on associe [15] son nerf
¢ qui est un ensemble simplicial. L’ensemble ./, ¢ des n-simplexes
de .7°¢ est formé des suites (f,, f2,..., f») de morphismes dont deux
successifs sont composapies et les opérateurs de faces sont données par

00(f15-0s Ju) = (S oes Sin)
an(fl’ ---yfn) = (fla "'9fn71)
ai(fl)"-sfn):(f19"'afifi+19---afn_1)a pour l=1,,n~1

L’homologie de ¢ est alors I’homologie du complexe
S ZALT) S LA, TS e S 2, F] -0,
ou Z[./, <] est le Z-module libre engendré par les n-simplexes de ¥ et
oud=Y._ (-1)79;.
En particulier, un groupe est un groupoide et on retrouve I’homologie
des groupes au sens usuel [2]. D’autre part, I’injection canonique dans ¢ de
Aut(x), considéré comme groupoide & un seul objet, induit un isomorphisme
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en homologie. En fait Auf(x) est équivalent au sens des catégories au
groupoide ¢': pour voir ce point, on considére un morphisme de grou-
poides & —Aut(x) en choisissant pour tout y un morphisme f,:x — y, et
en associant a g € Aut(y) ’automorphisme de x:fy_1 o go f,; une telle
équivalence induit une équivalence d’homotopie simpliciale sur les nerfs
(voir [15]) d’ou un isomorphisme en homologie.

Revenons au groupoide ¢’ ; quelque soit I’objet x de ¥’ , le groupe
Aut(x) est isomorphe au groupe multiplicatif F*. On va décrire un sous-
complexe du complexe

S LN G D LN LD e B L[N F L]0,
de nature totalement géométrique et dont I’homologie est encore I’homologie

de F*.

DEFINITION 7. On dit qu’un n-simplexe
est générique si ses sommets (Xx;)i-o..n SOnt en position générale dans
P> (F), c’est-a-dire s’ils engendrent un sous-espace projectif de dimen-

sion n.

DEFINITION 8. Pour n> 0, on appelle n-repére projectif de P = (F)

la donnée d’un (n + 2)-uplet (x¢,Xx:,...,X,,®) tel que le sous-espace pro-
Jectif engendré soit de dimension n et tel que les points Xo, X1, ..., Xn, ®
soient en position générale dans <(X¢,X1,...,X,,®). Un O-repere est

constitué d’un point. On note %, [’‘ensemble des n-repéres projectifs
de P>(F).

a

La donnée d’un n-simplexe générique x, - X, € e & X, €équivaut a
celle d’un n-repére projectif de P> (F). La correspondance s’obtient
comme suit: au n-simplexe geénérique X, <% X1 &... & X,, on associe le
n-repére projectif (x¢, X1, ..., X», ®), OU ® est 'intersection des sous-espaces
(A1, X5, cees XnDs X0y @2y X3y ceesXn)yeees X0y, X153y Xn_2,a,y. Inver-
sement au n-repere (Xo, X, ..., X, ®) correspond le n-simplexe générique
X0 & X1 L X,, ou les a; sont définis par

N N\
Ai = X1, X0 N LXQy cees XicyXisy ey Xn, O) .
Dans la correspondance, 1’opérateur de face 9; devient

AN
ai(xO, EXX) xn90)) = (an cees Xiy vees Xpy (D,‘) ’
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ou ®; = {X;,®)Y N (xo,...,/x>,...,x,,>. La figure 10 illustre le cas d’un
2-simplexe.

Xo ®, X

FIGURE 10

Le théoréme suivant donne une description projective de I’homologie du
groupe multiplicatif d’un corps a 1’aide des n-repéres projectifs de P = (F)
(comparer avec [7] et la situation topologique classique [12]).

THEOREME 4. L’homologie du complexe

() RN A AE A I AE AR

ou d= Z?zo(— 1)'0;, et ou 0; est décrit géométriquement comme
ci-dessus, est isomorphe a I’homologie H,.(F*,Z) de F*.

Preuve. On va utiliser la définition algébrique de I’homologie des
groupes (voir [2]). Soit un groupe G et Z[G] ’algébre du groupe G, ’homo-
logie H.(G,Z) s’obtient a partir de n’importe quelle résolution de Z par
des Z[G]-modules projectifs

-->M, > M,_,—> - '—)Mo‘_)Z,
en considérant ’homologie du complexe des «coinvariants»

oM, Q1L > M, _ Qzi1L— > M,z Z .

Soit alors ¢, ’ensemble des (n + 1)-uplets (vg, vy, ...,0,) de vecteurs
indépendants de F™), on considére le complexe
@) e S L[] S 2%, S - S L% S T,

oud= Y (=18, avec d;(Vo, ...s 0,) = (Vo5 ever Dy ooy 0) et (X 1 (1))
= Y n;. Ce complexe est une résolution de Z par des Z[F*]-modules
libres, ou l’action de F* provient de ’action diagonale A.(Voy.eay Uy)
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= (Mg, ..., AV,). Pour Pacyclicité, on remarque que si d(Zi(Uf), 50 =0,
on peut choisir un vecteur v de F®™ indépendant de tous les v ; et alors on
vérifie que ¥, (vg, ...,v5) = d(X,(v, 05, ...,0")). Pour terminer la preuve,
il suffit d’observer que le complexe des coinvariants de (2), sous I’action de
Z[F*], s’identifie au complexe (1); cela résulte du fait que les orbites
de %, sous l’action de F* sont en bijection naturelle avec les éléments de
A,; en effet a V'orbite de I’élément (vy, v, ...,0,) € &, est associé le
n-repére projectif image de (vg, v, ...,0,, Y. U;) par p; inversement soit un
repere projectif (xo, X1, ..., X,, ®) et soit D; la droite au-dessus de x; et A
celle au-dessus de w, ce repere provient de ’orbite de (vo, vy, ..., U,), OU les
v; sont les éléments de la décomposition d’un vecteur de la droite A dans la
somme directe des D;. [

Le groupe projectif GP(F ™) opére dans le complexe (1) par
f(XOaxla sesy xna(’)) = (f(X()), f(xl): seey f(xn)a f((,l))) .

L’action induite en homologie est triviale. Cela résulte d’un argument standard
d’algebre homologique (voir par exemple [2]); en effet cette action provient,
par passage aux coinvariants, d’une action de GL(F™) dans la réso-
lution (2), action qui est triviale sur Z et coincide avec 1’action diagonale
sur les éléments de %, ; noter que cette action commute avec celle de Z[F *].

3.2 HOMOLOGIE DU GROUPE LINEAIRE ET GRASSMANNIENNES INFINIES

On va esquisser une description géométrique analogue pour ’homologie
du groupe linéaire GL (/, F) en utilisant les considérations du paragraphe 2.
Relativement a la grassmannienne G =-/(F) des sous-espaces de dimension
[ —1 de P> (F), on peut définir des groupoides ¥, ; et ¢, , analogues
4 Tn et 0. Pour n>0, %' désigne I’ensemble des (n + 2)-uplets
(Xo, X1, ..., X,, Y) d’éléments de G=/(F) tels que n + 1 d’entre eux soient
en position générale dans P> (F) et Y est contenu dans le sous-espace
(X, X1, ..., X,): ces (n + 2)-uplets jouent le réle des repéres projectifs;
on pose de plus %4 = G=/(F). On est conduit naturellement a la construc-
tion d’un complexe géométrique

d

3) e Sz S 2%l 1S S z[#1 -0,

dont les groupes d’homologie coincident avec ceux de GL(/, F). Dans (3),
Z[{#'] est le Z-module libre de générateurs les éléments de ., et
d= Y, ,(~1)19; ou

8;(Xo, ey X, ¥) = (Xo, oty Xiy ooy X, Y1),
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avec Y; = (X, ...,)A(,-, X)) N (Y, X;). Le théoréme 4 se généralise alors
sous la forme suivante.

THEOREME 5. L’homologie Hy(GL(l,F),Z) du groupe linéaire
GL(l,F) est isomorphe a celle du complexe (3).

Preuve. 11 suffit encore de remarquer que le complexe (3) s’identifie au
complexe des coinvariants d’une résolution de Z par des Z[GL (/, F )]-modules
libres.

Pour cela, on introduit ’ensemble %’; des

VO Vl V,,
—— — —
! 1 / 1 !
(Vs s 00)s (V15 eees Uy eees (U oes U))

ot {v’}; ; est une famille libre de F™. Le Z-module libre Z[% ! 1 est aussi un
Z[GL(l, F)]-module libre pour [Daction définie comme suit: si
g=1(a;j)i<ij<ci € V=(01,...,0;), on pose g.V = (Zjaljuj, e Zja,juj)
et g.(Vo,.... Vo) =(g.Vo,...,8.V,). On a alors une Z[GL(/, F)]-réso-
lution acyclique de Z
S zlen S ee, ) S S LT S 2,

en posant d(Vo, .., V)= %' (=1 (Vos ..., Vi, .. V). Indiquons
comment 7' paramétrise les orbites de GL(/,F) dans %'. A lorbite
de 1’élément (Vo, ..., V,) € %f, correspond I’élément (X,, Xi, ..., X,,Y)
e #! défini comme suit: X; est associé au sous-espace de F™ engendré
par {v},...,0t} et Y & celui engendré par {¥7_,v},..., ¥, _,vi}. O

Comme au paragraphe précédent, ’action naturelle du groupe projectif
GP(F™) dans le complexe (3) induit I’action triviale en homologie.

A.A. Suslin [16] a prouvé le résultat de stabilité suivant

THEOREME 6. Si F est un corps infini, le morphisme naturel en
homologie

H,(GL(Il,F),Z) > H,(GL(I+1,F),Z) ,
est un isomorphisme pour [ > n.

I1 serait intéressant de retrouver ce résultat de facon géométrique a ’aide de
ce qui précede.
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4. MULTIRAPPORTS

4.1 GROUPOIDES ET n-RAPPORTS

Dans ce paragraphe, on fait quelques remarques sur des invariants liés au
groupoide ¢, associé a I’espace projectif P™(F). Notons lv’m(F ) le
dual projectifV de P"(F). Si (X1,....,%Xn;01,...,0,) est un élément de
(Pm(F))" x (P™(F))" tel que ¢;(X;) # 0, o (~) désigne un représentant
vectoriel, on considére 1’élément de F %

. @1(}1)62(;2) (Bn (-)_én)

01(X2) G2(X3) ... 0, (X))
C’est un invariant projectif de la configuration constituée des »n points x;
et des n hyperplans H; associés aux ¢;. Remarquer que

[X15 s Xn5 Q15 vens 9]

[Xo(1)s oes Xo(m)s Potys <o Oom] = [X1s oos X053 @015 o, 0]

pour tout élément o du groupe engendré par le cycle (12...n).
On appelle [x1, ..., Xn3 ©1, ..., ©,] le n-rapport de cette configuration; on
le note aussi [x{, ..., X, Hy, ..., H,]. Si m=1 et n =2, on a exactement

[X1, X2 V1, 2] = r(x1, X201, )2) -

Pour x;,...,X,;041,...,¢0, comme ci-dessus, posons a; = {X;, X;j+1
NH;,pouri#neta,=<{x1,X,) NH,.

PROPOSITION 4. On a dans le groupoide ¢, [’interprétation géomé-
trique suivante du n-rapport

[x19-'°9xn;(pls-'-9(pn] :fnofn—l O ... Ofl ’

dn

ou fi=Xx; .t Xiy1 pour i#+n et f,=X,,1 X1.
Preuve. 11 suffit de remarquer que Dapplication linéaire p~'(x;)
— p~1(x;;1) dont le graphe est conjugué harmonique de p~!'(a;) par

rapport & p~!(x;) et p~1(x;,;) associe & X; le vecteur %(i")— Xiv1. LI

= i
iv1(Xip1)

Montrons sur un exemple comment les n-rapports apparaissent naturel-
lement dans certains invariants projectifs. Soit V un F-espace vectoriel de
dimension finie et V'* son dual, si ¢ € S, est une permutation, 1’application
multilinéaire

I,:Vrx (V¥n—F

n
(X1 e X3 G1s s 60) = J] 6:(Xo9)
i=1
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est invariante sous I’action diagonale de GL (V) dans V" x (V*)7 (il est bien
connu [14] que ces fonctions jouent un role en théorie des invariants). Par
suite, si (X1, ..., Xn3P1, ..., ¢,) sont comme précédemment et si o, 1 € S,
on obtient un invariant projectif J, , a valeurs dans F'* en posant

_ 10(21’ '“53511; (Blﬁ R (‘pn)

— —

Ip.()_él, ---axn; (pls sy (pn)

JG,u(xls ---,xn;(pla seey (pn)

Soit alors

(il9i23 ...9ik) (j19j29 ..'5.].1) e (t19t29 ...,Zs)

la décomposition en cycles de la permutation ¢ ~!u, on vérifie facilement la
relation

JG,u(x19 ey Xns Oy eney (pn) = [Xc(i1)9 eeey Xc(ik); (pils ceey (pik] .
[xo(jl)a s X (s Qs ey @] 0 [xo(tl): s Xo(t)s Prys ooy (Dts] .
4.2 REMARQUES SUR UN INVARIANT DE GONCHAROV

Considérons Xy, ...,X,, Y1, ..., Vn, 20 points en position générale de
P7-1(F) et posons

[[xls ey Xns Vi "'syn]] = [xla "-9xn;H19 -°-’Hn] ’

ou H; est I’hyperplan {y,, ...,)Af,-, ..., ¥»»; on obtient un invariant projectif
qui vérifie en particulier

[Dx1, 2590, 3201 = (F(x1, X205 01, 92)) 1.

Soit «dét» le déterminant dans une base arbitraire de F7+!, d’aprés la
définition du n-rapport, on peut écrire

n , - A — —
H[:}det(yly ey Vig eees xnaxi)

n 7 — i\> — —
II,_,dét(y,, ..., y;, ooy Xn s Xoqiy)

[[xls s Xns Vi ---;yn]] =

b

ou T est la permutation cyclique (12...#); en particulier si on prend comme
coordonnées homogeénes de x,, ..., XnsViyeens Vn

a . . . adiy 1 0 . . . 0
o1 . . .0
anl . . . ann 0 O . " . 1 )
on a I’expression
a1 Qs " Ay,

(X1, coes X3 0105 ey vl =

A12dz3 " Ay
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Soit Z [F*] ’algébre du groupe multiplicatif de . On définit un invariant
projectif de 2z points xy, ..., X,, en position générale de P”~!(F) en posant
dans Z[F %]

Fu(X1s ooy Xon) = Z 86[[Xc(l)s--->xc(2n)]]'

6 €Sy,

Pour n = 3 on retrouve l’invariant de 6 points du plan projectif P2(F)
considéré par Goncharov dans son travail sur la conjecture de Zagier [8].

La proposition 4 montre que, pour n = 3, [[x, ..., X¢]] s’interpréte dans
le groupoide ¥, comme la composée f50 f,o fi, ou fi =X 4 X5,
fr=x; 3 X3, f3 = X3 3 x; et les points a; sont comme sur la figure 11.

FIGURE 11

On aurait pu aussi procéder en s’inspirant de la figure 12, c’est-a-dire poser

[[x15 "'axn;yls "‘)yn]]’ = [x13 "'an;L].’ “')Ln] b
. , NN ; P
ou L; est Phyperplan {p;, X1, ..., Xis Xit 15 «--» Xn?, OU X, 41 = X et définir
I’invariant projectif de 2n points

7;(X1,~-,X2n)= E 80[[x0(1):---;x0(2n)]]l-

c €Sy,

X3

X /"1 oy
x

4 FIGURE 12

Ces deux invariants sont essentiellement les mémes.
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PROPOSITION 5. Considérons linvolution de Z[F*] donnée par

nin+1)
—  tn

-]

7\.,1 = (_ 1) 2%
ol W, est involution de Z[F*] provenant de la multiplication par
(- 1)" dans F*, ona

Fro=MknOry,.

Preuve. Pour simplifier on posera

|j1, ...,jn|:= dét()—éjl, ...,)—C:jn) .
On a la relation
A N _
ln+1,3,..,m1 . n+il, i+l ,ni|..]2n2,..,n- 1,n|
A /\ .
ln+1,3,...n2 . \n+i1,. 5+ 1. ni+1 ... |2n,2,..,n—1,1]
N
1)n 11,3, comn+ 1| | ,i+ 1, nn+il..]2,...,n2n]
o 12,3, mn+ 1] |1, g+ i 1,200 = 1,210
N
2,3,0m2n L0+ L+ il |1,..,n—1,2n—1]
=(—-1 = :
12,3, ..,mn+ 1. |1, i+ L, +i+ 1] ]1,..,n—1,2n]
Par suite,

[[x1, --->X2n]]' =(—1)" [[Xr(l)a --~,X1(2n)]] )

ou T est la permutation

1 2 n n+1 ... 2n
on n+1 ... 2n—1 1 ... n]

n(n+1)

La signature de T est égale a (—1) 2 "

' dou la proposition. [

On voit que si w: Z[F*] — F est le morphisme de Z-modules déduit de
I’injection de F* dans F, alors ® © r, = 0 pour n = 0, 3 (mod 4); ’analogue
classique de I’invariant de Goncharov r; est donc trivial.

Dans la preuve de la conjecture de Zagier, pour n = 2 et 3, 'invariant r,
est couplé au m-logarithme (voir [9, 8, 4]); ’analogue pour #n > 3 est une
question intéressante qui reste mystérieuse.

Apres soumission de cet article, j’ai appris I’existence de deux preprints qui
considérent aussi la catégorie des points de I’espace projectif. Elle semble avoir
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été introduite par Koch [11] dans une courte note ancienne et non publiée;
Diers et Leroy [5] I’utilisent pour retrouver des résultats classiques de
géométrie. Les résultats qui précédent sont indépendants de ces articles.
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