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L'Enseignement Mathématique, t. 41 (1995), p. 257-280

BIRAPPORT ET GROUPOÏDES

par Jean-Louis Cathelineau

Soit F un corps et n un entier supérieur ou égal à 2, on associe à l'espace

projectif Vn(F) un groupoïde; ce groupoïde, défini par générateurs et

relations de manière purement géométrique, fait apparaître très naturellement
le groupe multiplicatif du corps et le classique birapport. Une structure
analogue existe plus généralement pour les grassmanniennes. Ces considérations

amènent à une présentation géométrique élémentaire de Phomologie
du groupe linéaire en terme de grassmanniennes, en analogie avec la situation
topologique classique, et illustre aussi l'intérêt (voir entre autres [3, 10]) de

considérer pour un groupe discret G, des catégories, autres que la classique
catégorie à un objet, dont le réalisé est aussi un espace d'Eilenberg-Maclane
K(G, 1). Ce qui suit espère montrer la dimension géométrique de ce point
de vue, dans la ligne des idées de F. Klein. On discute aussi quelques extensions
naturelles du birapport pour certaines configurations de points ou de sous-

espaces de l'espace projectif.
Ces résultats m'ont été inspirés par quelques aspects d'un travail de

Goncharov sur la conjecture de Zagier [9, 8, 4].

1. Groupoïdes et espaces projectifs

1.1 Présentation d'un groupoïde par générateurs et relations
Rappelons qu'une petite catégorie est une catégorie dont les objets forment

un ensemble, et qu'un groupoïde est une petite catégorie dont tous les

morphismes sont des isomorphismes. Un groupoïde est dit connexe si, entre
deux de ses objets, il existe toujours un morphisme. Dans la suite tous les
groupoïdes sont supposés connexes. Dans un groupoïde, les automorphismes
d'un objet forment un groupe et tous ces groupes d'automorphismes sont
isomorphes. Un groupe s'identifie à un groupoïde avec un seul objet et
tout groupoïde est équivalent, au sens des catégories, à un tel groupoïde.
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Mais il faut se garder de croire que la théorie des groupoïdes se réduit à celle
des groupes. Pour un aperçu général sur la théorie des groupoïdes et leurs

applications on renvoie à l'exposé de R. Brown [3].
Comme la notion de groupoïde généralise celle de groupe, il n'est pas

surprenant que l'on puisse présenter un groupoïde par générateurs et

relations.
Pour cela considérons les données suivantes

i) un ensemble d'objets X,
ii) un ensemble F de générateurs donné par des «flèches» f : xy entre

les éléments de X,

iii) un ensemble X de relations entre les éléments de F du type

fV 0 fer-70• • ' e fV idx(£j 1)

où l'extrémité de la flèche /, coïncide avec l'origine de fi+\.

Proposition 1. Il existe, à isomorphisme près, un et un seul groupoïde
W, d'ensemble d'objets X, muni d'une application (J) : F Mor X
compatible avec les objets, satisfaisant de plus à la propriété universelle

suivante:

«Pour tout groupoïde F, pour toute application h : X -> Obj XX,

et pour toute application \j/ : IF ^ Mor XX compatible avec h vérifiant:
"ty(fr)Zr ° V(fr-0 ° ^(/î)81 idh(x) pour chaque relation
de X, il existe un unique morphisme de groupoïdes

^ XX

tel que

\j/ o (J) ä \j/ .»

Esquissons la preuve: on commence par construire le groupoïde
«libre» XX engendré par les données X et JC Pour ce faire, on introduit
le graphe orienté T dont les sommets sont les éléments de X et dont les

/ /arêtes sont de l'un des types x -> y ou y -> x, pour f :x~+ y élément de IF
(on suppose que ce graphe est connexe). Le groupoïde XX a alors pour objets
les éléments de X et, pour morphismes, les classes d'équivalences de chemins

orientés sur le graphe T, relativement à la relation d'équivalence engendrée

par les relations élémentaires suivantes: deux chemins sont élémentairement

équivalents si l'on passe de l'un à l'autre en remplaçant une séquence
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x ^ y ^ x (resp. y ^ x 4- y) par x (resp. y). La composition dans i5f

s'obtient en composant les chemins; l'inverse de la classe de x -> y est alors

la classe de y -4 x.
Le groupoïde ¥ se déduit de i5f en passant au quotient par les relations

M. Plus précisément, les relations & engendrent une famille de groupes
(Gx)xeX, où Gx est un sous-groupe de Autyfx), satisfaisant à la condition

(*) pour tout morphisme / ; x -* y de la conjugaison: Autx Auty,

g^ f ° g ° f 1 induit une bijection de Gx sur Gy;

on obtient alors ¥ à partir de «Sf en passant au quotient par la relation
d'équivalence suivante sur les morphismes de «Sf

(**) pour /, ge Mor(x, y), f ~ gsi g"1 o / g Gx

Définition 1. Pour F un corps et l ^ 1, f nJ désigne le groupoïde
dont les objets sont les sous-espaces de dimension l de Fn+ 1 et les

morphismes, les isomorphismes linéaires entre ces espaces. Pour l 1, on
note plus simplement ce groupoïde

Dans les paragraphes 1.2 et 2.1, on donne pour n ^ 3/ - 1 une présentation

par générateurs et relations du groupoïde Fjj, en termes de

géométrie projective.

1.2 Le groupoïde des points de Pn (F)

Dans la suite, F est un corps commutatif quelconque, en particulier on
n'exclut pas le corps à deux éléments.

Définition 2. Pour n ^ 2, on considère le groupoïde ¥n défini par
générateurs et relations comme suit:

i) Les objets de ¥n sont les points de P n(F).

ii) L'ensemble des générateurs fF est constitué des flèches f (x y),
où x et y sont des points distincts de Pn(F) et a est un point
de la droite (x,y) distinct de x et y.

iii) Les relations M sont du type h g o f où f (x y), g (y z)
et h (x^ z) sont comme sur la figure 13 c'est-à-dire que x,y
et z sont en position générale et c est l'intersection des droites (x, z)
et <a,b>.
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Un triangle comme sur la figure 1 est une cubique dégénérée; noter
alors l'analogie avec la définition de la loi de groupe sur une cubique non
singulière. On peut dire aussi que les relations Lét sont données par les configurations

de Menelaiis: rappelons que le théorème de Menelaiis exprime
l'alignement des points a,b,c, sur la figure 1, par la condition affine
ax by cz _ i
ay bz ex

On rappelle que si F a au moins trois éléments et si x, y, a, b sont

quatre points distincts de P" (F) Fu{oo}, il existe un unique élément

r(x, y; a, b) e Fx et une unique homographie / e PGL(2,F) tels que

(/(*)>/( y),f(a),f(bj)(oo,0, 1

L'élément r(x,y; a, b)jrf 737 est le birapport des quatre points a, ;

pour les généralités sur le birapport, voir par exemple [1].
Dans la suite on convient que r(x,y; a, b) 1, si a « b.

Noter que le groupe projectif PGL(n + l,F) opère naturellement
dans ïfn par automorphismes de groupoïdes.

Théorème 1. Le groupoïde ïfn vérifie les propriétés suivantes

1) Pour x y, si f {x^y) alors f'l {y^x).
2) Pour x F y, Mor{x,y) coïncide avec l'ensemble des générateurs de

source x et de but y.

3) Pour tout xeP"(F), il existe un unique isomorphisme,

tx:Aut:fn(x)~+Fx, tel que pour f (x y) et g (y ^ x), tx(g o f)
r(x,y; a, b). De plus ces isomorphismes sont compatibles avec l'action

de PGL(n + l,F) dans Vn.

Ce théorème est en fait un corollaire du suivant.
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Théorème 2. Il existe un isomorphisme de groupoïdes cp -.Vn^-Tn
tel que, pour f (x y) et g (y x), on a cp (g ° f) r(x, y; a, b).

Avant de montrer ce dernier résultat, donnons deux illustrations géométriques

du théorème 1.

Si f (x y) et g — (y z) sont tels que a, z sont distincts et

alignés, alors g o f (x z), où c est le point de < x,y > obtenu par la

construction géométrique de la figure 2.

x'

Détaillons cette construction: on choisit un point x' en dehors de la droite

(x, y) et un point co sur la droite <x, x'> distinct de x et x'. Le point a correspond

alors a la composée / o (x' x), le point ß à g ° (/ ° (x' x))
et le point c à

(«°(/° (*' ^ *))) 0 (x ^ x')
L'associativité du groupoïde et le point 1) du théorème 1 montrent
que cette dernière composition n'est autre que g ° f. Le lecteur pourra
considérer le cas particulier où F est le corps à deux éléments et constater

que si x,y,z sont les trois points d'une droite de P2(F), on a la relation
x z y

(y z) ° (x -> y) (x-+z). Rappelons que le plan projectif du corps à

deux éléments est constitué de 7 points et 7 droites disposés comme sur
la figure 3

Figure 3
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L'associativité, dans le cas de trois morphismes où les objets sont en

position générale, correspond à la configuration de Desargues de la figure 4.

Figure 4

Rappelons le théorème de Desargues: si x,y,z et sont deux

triangles de l'espace projectif T*n(F), où n ^ 2, tels que x et x', y et y',
z et z' soient distincts, alors les points <x,y) n <x', j>'>, <j>, z> n <y\z')
et (x, z) n (x', z') sont alignés, si et seulement si les droites (x, x'),
(y>y') et <z,z'> sont concourrantes.

1.3 Preuve du théorème 2

Dans toute la suite, on note p l'application quotient F'î+ 1 \{0} -> P^CF).
On va construire un morphisme de groupoïdes (p : 7'n -> bijectif

sur les ensembles d'objets. Pour prouver que (p est un isomorphisme, il
suffira de vérifier que les morphismes induits Aut(x)-+Aut(<lp(x)) sont
des isomorphismes pour tout x de P "(F).

On note (p(x) la droite p~l(x). Si / (x y) est un générateur de

r£n, on définit (p(/) comme l'isomorphisme linéaire: p ~1 (x) -» p ~1 (y),
dont le graphe est la droite conjuguée harmonique de p~l(a) par rapport
à p~l{x) et p~l (y); autrement dit, (p(/) est caractérisé par le fait que

pour un vecteur non nul x e p~x(x), (p(/) (x) - x appartient à p~x{a).
Pour voir que ces données induisent un morphisme (p : 7n 7An,

vérifions la comptabilité avec les relations Soit f,g,h comme sur la

figure 1, on a

<P (/)(*) - x ep~>(a)et (p(g) (<p(/) (x)) - cp(/) (x) ep~1
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donc ((p(g) ° cp(/))(3?) - x appartient à l'intersection des deux plans

n (p~l(x)ip-l(z)) p~l(c)

ce qui prouve que <p(g o /) cp(g) ° <p (/).
Il reste à voir que les morphismes Aut(x) -> Aut(q> (x)) induits par

(p : &n -> sont des isomorphismes. Cela se fait en plusieurs étapes.

Si x y, l'inverse de f (xy) est représenté par g (y x).
En effet soit z en dehors de la droite (x, y) et h (x z), il suffit de

vérifier que h o (g o /) h, ce qui apparaît sur la figure 5 qui montre

une construction géométrique de {h o g) o f.
hog

Figure 5

L'étape suivante consiste à prouver que tout automorphisme de x
dans &n est représenté par une composée (j-^x)o(r^ y), où x ^ y.
Par définition de tout morphisme de x est représenté par un «chemin»

üq ai an _ i
x0 Xi Xn

Montrons que le composé d'un tel chemin est égal au composé de deux

générateurs. Il suffit de considérer la situation où n — 3; soit alors z en
dehors des droites <x0,Xi>, <Xi,x2> et <x2,x3> (voir aussi le lemme 1

du paragraphe 2.1 pour une situation plus délicate) et soit co sur la droite
<Xi,z>, distinct de Xj et z; l'associativité de la composition et le fait que
(z Xi) o (xi z) idXx montrent que

/ CO al a2 «0 CO / a0 a\ a2(z-* X, ->X2->X3) o (X0 ->x,-*z) (x0 -> -> x2 -» x3)

où l'on a identifié une suite de flèches à sa composée. D'autre part le choix
de z et les relations de définition de montrent que (x(J ^ x, ^ z) et

(zx, -+ x2x3) s'identifient à des générateurs de -f„.
Démontrons maintenant que, si fe Aut(x) est la composée h o g où

g x-^y et h y-^x,alors <p (f)eFx est le birapport r(x,y\a, b) des

quatre points x,y,a,b. On a cp(/) cp(/z) o cp(g); soit
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au-dessus de x,y, a, b tels que x + y a et b Xx + y, alors (p (/) (3?)

(p (/*)(-.?) donc cp(/) est la multiplication par X. D'autre part
X r(x,y ; ß, Z>); en effet si on envoie x à l'infini et si on prend y pour
origine de la droite affine ainsi obtenue, les coordonnées de a et b sont respectivement

1 et X, mais r(oo, 0; 1, X) X.

Pour achever la preuve, montrons que cp :Aut(x) Aut((p(x)) est injec-
tive. Notons (x,y; a, b) l'automorphisme de x: (y x) o (x y), et prouvons

que si r(x,y; ß, Z?) r(x,y'; ß', b'), alors (x, ß, Z?) (x,y'\a \ b').
On peut supposer que ß =£ b et a' b'. Si x, j, ne sont pas alignés,

par l'invariance projective du birapport l'égalité r(x, y; ß, b) r(x, y'; a', b')
entraîne que les droites (y,y'), {a,a') et <b,b') sont concourrantes.
Mais alors en utilisant les relations de définition de on a successivement

(y'̂ x)O (X^y') o (y-^x)(y-^ y')
ce qui montre que (x, y ' ; a ', b ') ~1 o (x, y ; ß, b) ZcZx. Si enfin, x, j, ' sont
alignés, on applique deux fois ce qui précède en considérant y" en dehors
de la droite <x,y> et a"\b" sur la droite <x,j"> tels que r(x,y;a,b)

r(x,y"; a", b").

2. Groupoïdes et Grassmanniennes

2.1 Présentation par générateurs et relations
On se propose de généraliser ce qui précède aux groupoïdes ^nj de la

définition 1 et aux grassmanniennes.

Définition 3. Pour n ^ 3/ — 1, on note y-'"'nJ le groupoïde décrit

par générateurs et relations comme suit.



BIRAPPORT ET GROUPOÏDES 265

i)Les objets de sont les mêmes que ceux de

ii) Les générateurs sont les isomorphismes linéaires E, -> E2 où E]

et E2 sont transverses.

iii) Si désignela composition des morphismes dans 7h"nJ, les

relations sont du type: u uvochaque fois que E, E2
^

et

Ei Ei sont deux isomorphismes tels que E2 et 3 soient

en somme directe.

Définition 4. Pour n ^ 3/ — 1, on introduit un troisième groupoïde

&nJ, défini en terme de la géométrie de PnQF) comme suit.

i) Les objets de &'nj sont les sous-espaces projectifs de dimension

l - 1 de l'espace projectif Pn(F).

ii) Les générateurs sont de la forme: f (X-> Y) où X, Y, A sont

trois sous-espaces de dimension l-l de P n(F), 2 à 2 disjoints

et A C (X, Y) P21-1 (F); ici (X, Y) désigne le sous-espace

projectif engendré par X u Y.

iii) Les relations sont du type g ° f h, où f (X ^ Y), g (Y~> Z)
et h (X Z) sont tels que dim{X, Y, Z) 3/ - 1 et où

C <X,Z> n <A,B>.

Théorème 3. Pour n ^ 3/ - 1, les groupoïdes Z nJ et WnJ sont

isomorphes.

Cela résulte de deux propositions.

Proposition 2. Quelque soit n^3l-l, le morphisme naturel
Z^ f i * Z' nJ est un isomorphisme.

Proposition 3. Pour n ^ 3/ - 1, les groupoïdes T"nJ et

sont naturellement isomorphes.

Preuve de la proposition 2. Le morphisme naturel est

bijectif sur les objets. Le point crucial est de voir qu'il est bijectif sur les

automorphismes. Noter que est connexe car, étant donnés deux

sous-espaces Ex et E2 de dimension / de Fn + l, il en existe un troisième

qui leur est transverse. Si Ex^> E2 est un générateur de
> l'inverse

de u dans Y^'nj coïncide avec l'inverse u~l de u dans Z^nj. En effet soit
E2 E3 avec Ex, E2 et E3 en position générale, on a successivement

(v + u) * u~l (v o u) + U~{ (v o u) o u~l V
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Tout morphisme E-+E' dans ynl s'écrit comme une composition
Ur Ur- i ' • • Uq

E E0 ^ Ei -> • • • -* Er_, ^ £"

où £/ et £,/+1 sont transverses. Un tel morphisme a un représentant de

la forme

E^H*E\
où H est transverse à E et E'.

Il suffit de le prouver pour r 3. Dans ce cas particulier, on a l'assertion
suivante quelque soit le corps F:

Lemme 1. Dans la situation ci-dessus où r - 3, il existe H de

dimension l tel que H, E0, Ex, H, Ex, E2 et H, E2iE3 soient
respectivement en somme directe.

Reportons la preuve du lemme et soit w:E2~* H, si on pose u u3 o w-1
et u w o u2 o m, on a les relations

u3 * u2 * ux u3 (w-1 * w) * u2 * Wi

(«3 * W_1) * ((w * W2) * Wi) (w3 O W"1) * (w Ö w2 ° U\) V * u

d'où la réduction.
Soit maintenant un diagramme

H

V V
E E

u ' u'

N

H'

où u, u', u et u' sont des générateurs de Il reste à montrer que, si

un tel diagramme commute dans alors il commute aussi dans

Si E, H et H' sont en somme directe, on a successivement

u * u'~x - {u o u'~l) O'-1 o y) u'-1 * u

d'où v' -k u' - v -k u. Sinon on considère H" ^ E de telle sorte que

u" o w" y o w avec E, H, H" et E, H', H" en somme directe, et on

applique deux fois ce qui précède.



BIRAPPORT ET GROUPOÏDES 267

Preuve du lemme 1. Soient Vx E0 © Ex, V2 Ex © E2 et

V3 E2@E3, on veut trouver un sous-espace de dimension / de F" + 1

transverse aux Vt. En considérant un sous-espace E de Fn +1 de dimension 3 /

contenant V2i on se ramène facilement au cas où dim(Vx + V2 + V3) ^ 31.

On peut alors écrire

Vx + V2 + V3 V2 © 5 © Tx © T3

où S C Vi n F3, Ti C Vi, T3 C V3 et 7Ù (resp. T3) est transverse à K3

(resp. Ei). Soit a dim S, ßi dimTx et ß3 - dimT3, il suffit alors de

trouver un sous-espace H' de V1 + V2 + V3 de dimension a + ßi + ß3

transverse à chacun des Vt.

On a les inégalités a + ß!^/eta + ß2^/; par suite, il existe des sous-

espaces, en somme directe, T{ et S' de E2 (resp. T'3 et Sf/ de £1) vérifiant
les conditions: dimT\ ß1? dimT'3 ß3, dimS' — dimS" a, (T[ © S')
n Vi {0} et (T;@S")n V3 {0}.

Soit alors S un sous-espace de S © S' © S", de dimension a, transverse

à S © S', S © S" et S' © S". Soit de même Tx (resp. T3) un
sous-espace de Tx® T[ (resp. T3 © T3) de dimension ßi (resp. ß3)

transverse à ^ et Tj (resp. T3 et T3). La somme directe S © fx © T3 est

le sous-espace H' cherché.

Preuve de la proposition 3. Soit p: Fn +1 \{0} -> PW(F) la projection,

on considère la bijection \j/ : Obj-* Obj®Vn,i) donnée par
V{E) p(E\{0}). On va prolonger \j/ en une bijection notée aussi \j/ de

l'ensemble des générateurs de sur l'ensemble des générateurs de &nJ
respectant les relations.

Si u:E-+ H est un générateur de ^'nJf le sous-espace J {u(x) - x:
x e E} de Fn + 1 est de dimension / car E n H {0}. Posons alors

H= X^Y
°ù X —/»(.EAjO}), Yp(//\{0}) et A 0}). Cette application est
bijective; on a en effet

v -1 (X4 Y) p -1 (X) ^ p-1 (F),
où pour a: e p "1 {X), u(x)estl'unique élément de p~l(Y) tel que
P(y ~x) e A: noter qu'il existe une unique droite projective A passant par
p(x) et rencontrant A et Y. Lorsque / 2, penser à la surface réglée
engendrée par trois droites en position générale.
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Figure 7

Il reste à voir que \j/ respecte les relations. Soit Ex^E2lE3 en somme
directe et soit de plus ux\E\ E2 et u2:E2-*E3; posons pour i 1,2

Ji {Ui(x) - x:x e Ei}

Comme

(m2 ° U\) (x) — X (u2(u 1 (x)) - Mix) + (ui(x) - x)

on a

{(>2 0 Ml) (x) — x: x g £1} C (/1 © J2) n (E1! © E2)

L'égalité résulte de l'égalité des dimensions.

2.2 Invariants projectifs de quadruplets de sous-espaces
DE DIMENSION l - 1 DE P2/~ 1 (F)

On peut formuler dans le cadre de ce qui précède des invariants projectifs
de quatre sous-espaces de dimension / - 1 de P 2l~l{F) qui généralisent
le birapport de quatre points de P1^)-

Pour cela, revenons au groupoïde T©/. On considère la réunion

disjointe des groupes d'automorphismes de

dim E /

A : II GL(E)
E C Fn + 1

Le groupe linéaire GL(n + 1, F) opère par conjugaison dans A. Pour f e A,
soit

X'-adfW-1 +
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son polynôme caractéristique. Les az sont des fonctions invariantes par

l'action de GL(n + 1,F) sur A. En composant ces fonctions avec l'isomor-

phisme de groupoides du théorème 3, on obtient pour / ^ 1 et n ^ 31 — 1,

des fonctions cz sur
II Aut{X)

X e Obj £J„ 11

qui sont invariantes par l'action du groupe projectif PGL(n+\,F)
sur

On en déduit des invariants projectifs qui sont des analogues du

birapport. Par exemple, si X,Y,A,B sont quatre sous-espaces projectifs

de dimension / — 1 de P2/_10F), tels que X, Y, A et X, Y, B soient respectivement

en position générale, alors les éléments de F donnés par les

Ci{{Y^ X) o F)) sont des invariants projectifs de la configuration
constituée par ces quatre sous-espaces.

On sait que «en général» (au sens de la géométrie énumérative et pour un

corps algébriquement clos, voir par exemple [6] p. 272 et [11] p. 206),

si X,Y,A,B sont quatre sous-espaces de dimension / - 1 de Y2!~l(F)
deux à deux disjoints, il existe exactement / droites (Ay)y i, •••,/ de P2/~ 1 (F)
qui rencontrent à la fois X, Y, A et B.

Supposons que X,Y,A,B soit une telle configuration; notons

Xj, yj, üj, bj les points d'intersection respectifs de Ày avec X, Y, A
et B, et soit aj le birapport r(xj, y/; Qj, bj). Alors, si le corps F a

au moins l + 1 éléments, les a7 sont deux à deux distincts et coïncident
B A

avec les valeurs propres de (L -> X) o (X Y), d'où les relations

cAiY^X) o (X^ Y)) Oi(a,, • • a/)

où Gj désigne la i-ième fonction symétrique élémentaire de l variables.

En effet notons E le sous-espace de dimension / de F21 tel que /?(E\{0})
X dans la projection de F2/\{0} sur P2/-1(F); soit Dj la droite de E

au-dessus de Xj\ soit de plus / l'élément de GL(E) correspondant à
B A

(Y X) o (X -» Y). En reprenant des arguments contenus dans les preuves
des théorèmes 2 et 3, on montre qu'une droite vectorielle D de E est une droite

propre de / si et seulement si il existe une droite (unique) À de P2/" 1 (F)
passant par le point x: /?(D\{0}) et rencontrant Y, A, et B; de plus la
valeur propre correspondante est le birapport r(x, y; a, b), où y,a,b sont
les points d'intersection de À avec Y, A, et B. On voit donc que les ay
sont valeurs propres de /; de plus ces valeurs propres sont deux à

deux distinctes, sinon / admettrait un sous-espace propre de dimension
au moins égale à 2, ce qui entraînerait l'existence d'au moins card(P1 (F))
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card {F) + 1 droites distinctes de P 2l~l(F) rencontrant X, Y, A, et B,
mais card (P1 (F)) > /, par hypothèse sur F. Il en résulte que / est diago-
nalisable et que les Xj sont en position générale dans X, car les Dj sont en

somme directe.
On peut aussi montrer que les birapports ay donc aussi les Cj

caractérisent, dans la situation ci-dessus, la configuration X,Y,A,B à

transformation projective près.

3. Homologie du groupe linéaire et géométrie projective

3.1 Homologie du groupe multiplicatif d'un corps et espace
PROJECTIF INFINI

A la place des configurations de Menelaiis, on aurait pu utiliser dans

la définition du groupoïde les configurations de Ceva comme sur la

figure 8.

y

Figure 8

On rappelle que le théorème de Ceva exprime le fait que les droites <x, &>,

(y, c) et <z,a> de la figure 8 sont concourrantes par la condition affine
ax_ by_ cz_ I
ay bz ex

Définition 5. On note &'n le groupoïde ainsi obtenu.

Le groupoïde & 'n est isomorphe à 5#. L'isomorphisme avec est

d'ailleurs plus naturel que son analogue pour Si F est de caractéristique

2, on a l'égalité ^'n ^n\ en effet les points a, b, c de la figure 8

sont alors alignés et dans ce cas les configurations de Menelaiis et celles de

Ceva coïncident. Noter aussi que sans hypothèse sur F, on obtient un
isomorphisme entre et en termes de générateurs, en associant au

générateur (xy) de le générateur (x ^ y) de <^'n, où a' est le
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conjugué harmonique de a par rapport à x et y. Que cette correspondance soit

compatible avec les relations se traduit par la figure 9. Il faut comprendre cette

figure comme suit: si (x,y,a,a'), (x,z,c,cr) et (y,z,b,b') sont

respectivement en division harmonique, alors la configuration des six points

x, y, z, a, b, c est de Menelaüs si et seulement si la configuration

Définition 6. Soit P00 (F) l'espace projectif associé au F-espace

vectoriel de dimension dénombrable F{N). De manière analogue à cF'n,

on définit un groupoïde F'œ dont les objets sont les points de P00(F).

Ce groupoïde est limite inductive des Avant d'utiliser Sf^, rappelons
d'abord quelques généralités sur l'homologie des groupoïdes. A tout groupoïde

et plus généralement à toute petite catégorie, on associe [15] son nerf
- / 'C qui est un ensemble simplicial. L'ensemble /•

n F/ des «-simplexes
de / y est formé des suites f2, fn) de morphismes dont deux
successifs sont composaoïes et les opérateurs de faces sont données par

6o(/l

M/l, fn) {/l, l)

d/(/i, (fit ...,////+1, ^i), pour i 11
L'homologie de est alors l'homologie du complexe

•••4 zk ,?] 4 z[._r„_,<?] 4 4 ] >0

où Z[. / „ tf] est le Z-module libre engendré par les n-simplexes de et
où d E"=0(- ')%•

En particulier, un groupe est un groupoïde et on retrouve l'homologie
des groupes au sens usuel [2], D'autre part, l'injection canonique dans de
Aut(x), considéré comme groupoïde à un seul objet, induit un isomorphisme
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en homologie. En fait Aut(x) est équivalent au sens des catégories au

groupoïde pour voir ce point, on considère un morphisme de grou-
poïdes ^ -^Aut(x) en choisissant pour tout y un morphisme fy:x~* y, et

en associant à g e Aut(y) Pautomorphisme de x: f~l o g o fy; une telle

équivalence induit une équivalence d'homotopie simpliciale sur les nerfs

(voir [15]) d'où un isomorphisme en homologie.
Revenons au groupoïde quelque soit l'objet a de ^7/00, le groupe

Aut(x) est isomorphe au groupe multiplicatif Fx. On va décrire un sous-

complexe du complexe

••4 4 ZMV,S^]4 4 z[^io -> 0

de nature totalement géométrique et dont l'homologie est encore l'homologie
de Fx.

Définition 7. On dit qu'un n-simplexe
a\ a2 an

Xq <- Xi <" Xn

est générique si ses sommets (Xi)i 0...n sont en position générale dans

P°°(F), c'est-à-dire s'ils engendrent un sous-espace projectif de dimension

n.

Définition 8. Pour n> 0, on appelle n-repère projectif de P00 (F)
la donnée d'un {n + 2)-uplet (x0, xÏ9..., xn, co) tel que le sous-espace
projectif engendré soit de dimension n et tel que les points x09Xi, xn, co

soient en position générale dans <x0, X\, xn, co >. Un 0-repère est

constitué d'un point. On note &n l'ensemble des n-repères projectifs
de P°°(F).

a\ a2 an
La donnée d'un «-simplexe générique x0 +- X\ <- • • • xn équivaut à

celle d'un «-repère projectif de P00 (F). La correspondance s'obtient
a\ a2 an

comme suit: au «-Simplexe genenque x0 X\ <- * * • xn, on associe le

«-repère projectif (x0, X\, ...9xn9 co), où co est l'intersection des sous-espaces

(al,x2, ...,xn}, (x0,a2,x3, ...,xn), (x0,Xi, ...,xn-2,an).
Inversement au «-repère (xq9 X\, xn, co) correspond le «-simplexe générique

Xo ^ X\ ^ ^ x„9 où les ai sont définis par

at <X/_i,X/> n <x0, ...,x/2iSi, co>

Dans la correspondance, l'opérateur de face 6/ devient

0/(*o, ...,x„,(ù) (x0, xn, CO/)
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où CO/ <x/, co> n <x0, La figure 10 illustre le cas d'un

2-simplexe.

Figure 10

Le théorème suivant donne une description projective de l'homologie du

groupe multiplicatif d'un corps à l'aide des ^-repères projectifs de P00 (F)
(comparer avec [7] et la situation topologique classique [12]).

Théorème 4. L'homologie du complexe

(1) ••• 4 Z [M„]4 Z[&n-\] 4 ••• 4 ZW0]^0,
où d E"=o(_ et où 6/ estf décrit géométriquement comme
ci-dessus, est isomorphe à l'homologie H*(FX, Z) cfe Fx.

Preuve. On va utiliser la définition algébrique de l'homologie des

groupes (voir [2]). Soit un groupe G et Z [G] l'algèbre du groupe G, l'homologie

77* (G, Z) s'obtient à partir de n'importe quelle résolution de Z par
des Z [G]-modules projectifs

• • • Mn M„_ -+ • • • - M0 -+ Z

en considérant l'homologie du complexe des «coinvariants»

• * » -> Mn (x) z [G] Z * Mn _ i 0z[G] Z - • • • - M0 (x) z [G] Z

Soit alors l'ensemble des (« + l)-uplets (u0, Vi, un) de vecteurs
indépendants de F(N), on considère le complexe

(2) •••4. Z[&„1 4 Z[4„_,] 4 4 Z[^0] 4 z,
où d E "=

o - 1) '9/, avec di(v0, et a(E «;((<;))
E «,. Ce complexe est une résolution de Z par des Z[FX]-modules

libres, où l'action de Fx provient de l'action diagonale A,. (o0>..., u»)
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(Xuo, ...,Xun). Pour l'acyclicité, on remarque que si d(Yti(vl0,..., vln)) 0,
on peut choisir un vecteur v de F(N) indépendant de tous les ulj et alors on
vérifie que ...,uln) d(Y,i(v9vl0, ...,uln)). Pour terminer la preuve,
il suffit d'observer que le complexe des coinvariants de (2), sous l'action de

Z[FX], s'identifie au complexe (1); cela résulte du fait que les orbites
de sous l'action de Fx sont en bijection naturelle avec les éléments de

&n; en effet à l'orbite de l'élément (u0, ul, un) e &n est associé le

n-repère projectif image de (u0,ui, ...9un> £>/) Par PI inversement soit un
repère projectif (x0, X\,*.., xni to) et soit Dt la droite au-dessus de x-t et À
celle au-dessus de co, ce repère provient de l'orbite de (u0, vx, un), où les

Vi sont les éléments de la décomposition d'un vecteur de la droite A dans la
somme directe des Dx.

Le groupe projectif GP(F(N)) opère dans le complexe (1) par

f(x0,xi, (/(x0),/(*i),
L'action induite en homologie est triviale. Cela résulte d'un argument standard

d'algèbre homologique (voir par exemple [2]); en effet cette action provient,

par passage aux coinvariants, d'une action de GL(F{N)) dans la
résolution (2), action qui est triviale sur Z et coïncide avec l'action diagonale

sur les éléments de ; noter que cette action commute avec celle de Z [F x ].

3.2 Homologie du groupe linéaire et grassmanniennes infinies

On va esquisser une description géométrique analogue pour l'homologie
du groupe linéaire GL(l,F) en utilisant les considérations du paragraphe 2.

Relativement à la grassmannienne G des sous-espaces de dimension

/ - 1 de P°°(F), on peut définir des groupoïdes ^oo,/ et analogues
à ^foo et ^ Pour n > 0, &ln désigne l'ensemble des (n + 2)-uplets

(X0,Xi, Xn, Y) d'éléments de Gœ l(F) tels que n + 1 d'entre eux soient

en position générale dans P°°(F) et Y est contenu dans le sous-espace
< X0, X1, Xn >: ces (n + 2)-uplets jouent le rôle des repères projectifs;
on pose de plus &l0 G00'1 (F). On est conduit naturellement à la construction

d'un complexe géométrique

(3) ••• 4. Z{M'n]4z[#!_,] 4 4 Z[^]-0,
dont les groupes d'homologie coïncident avec ceux de GL(l,F). Dans (3),

ï[&ln] est le Z-module libre de générateurs les éléments de et

d= lloi-lVà,. où

0,(^0, ~.,Xn, Y) (X0,
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avec Yi (X0, n < Y,X,).Lethéorème 4 se généralise alors

sous la forme suivante.

Théorème 5. Uhomologie H*(GL(l,F), Z) du groupe linéaire

GL(l,F) est isomorphe à celle du complexe (3).

Preuve. Il suffit encore de remarquer que le complexe (3) s'identifie au

complexe des coinvariants d'une résolution de Z par des Z[GL(l, F)]-modules
libres.

Pour cela, on introduit l'ensemble céyln des

^0 Vl Vn

((l> o 5 •••> t'o)? (^i » • > j V n)) 5

où X}/,y est une famille libre de F(N). Le Z-module libre Z[Wln] est aussi un

Z[GL(l, F)]-module libre pour l'action définie comme suit: si

g (%)i^4i^/ ^ V (ui, ...,^/), on pose g. F=
et On a alors une Z [GL (/, F)]-résolution

acyclique de Z

••• 4 Z[^i] 4. z[^i_,] 4 4 z[U.I 4 Z,
en posant d(V0, L„) V/, V„). Indiquons
comment déln paramétrise les orbites de GL(l,F) dans céln. A l'orbite
de l'élément (V0, Vn) e X correspond l'élément (X0, Xn, Y)
e dé'n défini comme suit: Xt est associé au sous-espace de F(N) engendré

par {pj, ...X} et Y à celui engendré par {E/ 0y/» •••» £7=o^^
Comme au paragraphe précédent, l'action naturelle du groupe projectif

GP(F(N)) dans le complexe (3) induit l'action triviale en homologie.
A.A. Suslin [16] a prouvé le résultat de stabilité suivant

Théorème 6. Si F est un corps infini, le morphisme naturel en

homologie

Hn (GL(l, F), Z) -> Hn (GL(l + 1,F),Z)
est un isomorphisme pour l ^ n.

Il serait intéressant de retrouver ce résultat de façon géométrique à l'aide de

ce qui précède.
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4. MULTIRAPPORTS

4.1 Groupoïdes ET «-RAPPORTS

Dans ce paragraphe, on fait quelques remarques sur des invariants liés au
groupoïde m associé à l'espace projectif Pm(F). Notons Pm(F) le
dual projectif de Pm(F). Si (xi, xn; (pi, «.., (pn) est un élément de

(Pm(F))n x (Pm(F))n tel que (p/(xj) ^ 0, où (^) désigne un représentant
vectoriel, on considère l'élément de Fx

T 1
<Pl(Xl)V2(X2) Vn{Xn)

[xi, ...,xn;(pl5 ...,(pw] _ _ _ _ =;——
<Pi(x2)<p2(x3)... <p„(xi)

C'est un invariant projectif de la configuration constituée des « points x,-

et des « hyperplans Ht associés aux (p/. Remarquer que

[*0(1) ' • • • 5 *C(H) J (Po(l)î • • • > ^PG(«)] [* 1 • » *9 Xn (p i (p n ]

pour tout élément o du groupe engendré par le cycle (12...«).
On appelle [xi9 xn \ cpi, (p„] le «-rapport de cette configuration; on

le note aussi [xx fxn; H\ 9 Hn]. Si m 1 et « 2, on a exactement

[*1,*2Î yi, yz] r(xl9x2;yi,y2)

Pour x\, x„;cp cp„ comme ci-dessus, posons ai^(xi)xi+1>
n Hi pour i ^ n et an <Xi, xn) n Hn.

Proposition 4. On a dans le groupoïde l'interprétation géométrique

suivante du n-rapport

[Xif ...,xn; (pi, (pj =/„° A-i ° ° /i
où fi^Xi^Xi^i pour i * n et fn xn + 1^xl.

Preuve. Il suffit de remarquer que l'application linéaire p~l(xi)
~^p~l(xi+1) dont le graphe est conjugué harmonique de p~l(ai) par

rapport à p ~1 (x,-) et p~l(xi+1) associe à X; le vecteur _ x xi+ j.f r+ 1 (*/+ l)

Montrons sur un exemple comment les «-rapports apparaissent naturellement

dans certains invariants projectifs. Soit V un F-espace vectoriel de

dimension finie et F* son dual, si o e Sn est une permutation, l'application
multilinéaire

IG:Vn x (V*)n^F
n

(xi, <p m- J] <p,(*0(i))
/ - 1
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est invariante sous l'action diagonale de GL(V) dans Vn x (V*)n (il est bien

connu [14] que ces fonctions jouent un rôle en théorie des invariants). Par

suite, si (xi, ...,x„;(pi, ...,(p„) sont comme précédemment et si o,[ie5„,
on obtient un invariant projectif /0)[là valeurs dans Fx en posant

/G(xi, ...,x„;(pi,Ja, n (%1 } '"> %n > Ql > •••> Q77) —

/^(xl5 ...,x„; (Pi, cpj

Soit alors

(ù,C, ••*,4) UiJz> Ji) (tl9t2, --,ts)
la décomposition en cycles de la permutation o ~1 p, on vérifie facilement la
relation

Ja^(xu ...,x„; (p(p„) [x0(/l), ...,xo(/yt); (p/l? cp/J

5 •••? Xo(ji) ' ^y'i > •••> Qy'/] ' ' ' L^oCq) J •••) -*"a(/v) 5 Ip/j 5 •••> Q/s] •

4.2 Remarques sur un invariant de Goncharov

Considérons X\, xn, y{, yn, 2n points en position générale de

p«- et posons

[[xi x. m.,, Xg, y i, yn]J [xi, xn \ Hi, Hn ]

où Hi est l'hyperplan (y{, ...,yn ...,yn); on obtient un invariant projectif
qui vérifie en particulier

[[*i ,x2;yl,y2]]-(rix2;y,y2)) 1

Soit «dét» le déterminant dans une base arbitraire de F"+1, d'après la
définition du n-rapport, on peut écrire

[[1t,,...,xn;y,,...,yn]] F", xf)
^

II / i dét (y i, y j 9 xn, xf||)
où t est la permutation cyclique (12...n); en particulier si on prend comme
coordonnées homogènes de xl5 ...,xn)ylt ...,yn

an aln 1 0 0

0 1 0

an\ • • ann 0 0 1

on a l'expression

#11 #22 * ' ' #77«

#12 #23 ' ' ' #/7l
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Soit Z[FX] l'algèbre du groupe multiplicatif de F. On définit un invariant

projectif de 2n points x1} ...,x2n en position générale de Pn~l(F) en posant
dans Z[FX]

fn\X 1 •••»^2«) ^ ^c[[-^a(l)5 • • • %o (2n) ]] •

° 6 52/7

Pour n 3 on retrouve l'invariant de 6 points du plan projectif P2(F)
considéré par Goncharov dans son travail sur la conjecture de Zagier [8].

La proposition 4 montre que, pour n 3, [[x{, ...,x6\\ s'interprète dans
a i

le groupoïde :^2 comme la composée /3 o /2 o fx, où f\ Xi - x2,
f2 x2-*x3, f3=x3-*Xi et les points sont comme sur la figure 11.

On aurait pu aussi procéder en s'inspirant de la figure 12, c'est-à-dire poser

[[a i, ' " i x n 9 y i, *.., y n ]] \x i,. •., xn $ L i Ln ]

où Li est l'hyperplan <j/, x„), où xn + ï x{ et définir
l'invariant projectif de 2n points

y n (-^ 1 5 •••5 -^2 n) [[^o(l)5 «"j ^o(2n)]]
o e Sln
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Proposition 5. Considérons Vinvolution de Z[FX] donnée par

n(n + 1)
- + n - 1

^ (-1) 2 n„

où n„ est Vinvolution de Z[FX] provenant de la multiplication par

(- \)n dans Fx, on a

r n
~ ^n ° Y n

Preuve. Pour simplifier on posera

\ji,...,jn|: dét(xh,

On a la relation

| n + 1,3,..., //, 1 1 \ n + /', 1,...,/,/ + 1,...,//,/' 1 | 2/?,2, ...,n — l,n\
A

| h + 1,3, ...,/z,2 | | /2 + /, 1,...,/,/+ 1,1 |
I 2^,2,...,//- 1,1 |

I 1,3,...,«, w + 1 | | 1-h 1,...,//,// + /1 \2,...,n,2n \

(-1)" -2
Ä ; ; î

| 2,3, ...,//,« + 1 | | 1,+ /1 | 1,2, ...,n - 1,2/2 |

| 2,3, ...,//, 2/2 | | 1, ...,/ + 1, ...,/2,/2 + / I I 1, ...,/2 - 1,2/2 — 1 I

I 2, 3, ...,/?, /2 + 1 |... 11,..., i + l,...,/2,/2 + /+ 1 | | 1, ...,/2 — 1, 2/r |

Par suite,

[[Xi, X2fll] — — 1)" [[ATx 1) Xx(2«)]]

où t est la permutation

/I 2 n n + 1 2/t >

\2/7 n -h 1 2/2 - 1 1 n

n(n + 1)

La signature de t est égale à - 1) 2 +" d'où la proposition.

On voit que si co: Z [Fx] F est le morphisme de Z-modules déduit de

l'injection de Fx dans F, alors co o fn 0 pour n 0, 3 (mod 4); l'analogue
classique de l'invariant de Goncharov r3 est donc trivial.

Dans la preuve de la conjecture de Zagier, pour n 2 et 3, l'invariant rn
est couplé au //-logarithme (voir [9,8,4]); l'analogue pour n > 3 est une
question intéressante qui reste mystérieuse.

Après soumission de cet article, j'ai appris l'existence de deux preprints qui
considèrent aussi la catégorie des points de l'espace projectif. Elle semble avoir
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été introduite par Koch [11] dans une courte note ancienne et non publiée;
Diers et Leroy [5] l'utilisent pour retrouver des résultats classiques de

géométrie. Les résultats qui précèdent sont indépendants de ces articles.
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