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240 M. JURCHESCU AND M. MITREA

6. TESTS FOR THE EQUALITIES du = f AND du = f IN THE WEAK SENSE

Let Q € R” be a fixed open set in R”. In this section we let % (Q) denote
the collection of all rectangles Q contained in Q and having p(Q) < ¢y, for
a fixed real number 1 < ¢j < + .

First, we shall give a coordinate free definition of the exterior differen-
tiation operation. This builds on the classical work of Pompeiu [Po2] for
the case n = 2 (cf. also the results in §7).

DEFINITION 6.1. A (n — 1)-form wu which is locally (n — 1)-integrable
on Q is said to be exteriorly differentiable at a € Q if the limit

1
c:= lim s U
ola Ap(Q) 90

exists in C. More specifically, we assume that there exists a complex
number c¢ so that, for any € > 0, there exists an open neighborhood
Uc Q of asuch that

< el (Q),

l j u— ch,(Q)
80

for all Qe #(Q), Q C U.
We then set u’(a):=c¢ and du,:=cm,A-+*AT,, Where m{,...,T,
are the canonical coordinate projections of R”.

For n = 1, u’ becomes the usual derivative of the function u. Our next
theorem collects several exterior differentiability criteria for (n — 1)-forms.

n . Pt
THEOREM 6.2. Let u= Y. (=D~ tuidx,n--ndx;n-- ndx,
be a locally (n — 1)-integrable form on Q.

(1) If the function u;,i=1,...,n are differentiable at a € Q,
then u s exteriorly differentiable at a and

ou

w'(@= L —(@.

i=1

(2) If u satisfies one of the equivalent conditions in Theorem 1.3,

then u is exteriorly differentiable at almost every point of Q and

u' e L'(Q,loc). In particular, this is the case if u is absolutely con-
tinuous or integrally Lipschitz on Q.
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Proof. By hypotheses, there exist some numbers c;; € R and some
functions &; which are continuous and vanish at a, such that

ui(x) = ui(a) + Y c(xj—a) + Ex)||x—all, i=12..,n.
j=1
A straightforward computation then yields u'(a) = Zlec;,-.
The second part of the conclusion follows directly from Theorem 1.3

and Lebesgue’s differentiation theorem. L]

Now we consider a p-form u = El’”:pu,dxf on Q,0<p<n—-1
Here Y’ indicates that the sum is performed over the set of all strictly
increasing multi-indices I of length p, i.e. all ordered p-tuples of the
form I= (iy,...,ip), with 1<i; < -+ <i,<n Also, dx! stands for
dxi A /\dxip if I = (iy,...,i,). For each strictly increasing multi-index J
of length p + 1 we introduce the (n — 1)-form

ul:= Y (—l)f—l( Y’ syuj) a’xl/\“-/\ﬁ}i/\---/\dxn.

i=1 [I|=p
Here ¢/ =0 unless {i}ul=J, in which case s}l is the sign of the
permutation taking i/, the concatenation of {i} and 7, onto J.
The forms u”’ will be called the (n — 1)-forms associated to u. Since,
clearly, the application

ur{u’;|J|=p+ 1}

is one-to-one, we can represent a given differential form either by its
coefficients, or by the (n — 1)-forms associated to it. In fact, for p = n — 1,
the functions u”/, |J| = n, are precisely the coefficients of the form u.
Furthermore, one can easily check that u is locally integrable if and only
each of its associated (n — 1)-forms is locally integrable.

It is natural to use the associated (n — 1)-forms to extend the concepts
already defined for p = n — 1 to the general case of p-forms, p < n — 1.
More specifically, a p-form is called locally (n — 1)-integrable, exteriorly
differentiable at a, etc, if all its associated (n — 1)-forms have that particular

property. In the case when u/’s are exteriorly differentiable at a € Q,
we also set

du,:= Y (W) (a)n’,

|Jl=p+1

J .o — 1 — 1 ;
where n/:= m; A AT T = (1, e Jpa).
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Suppose now that u = E?zl(—l)f‘lu,-dxl/\-~-Aﬁ},-/\---/\dxn is a
(n—1)-form on Q. For 0 <r<1,xe Q, and 0 < ¢ < dist(x, 9Q), we set

u(y) — u(2) ||

y#2z€Bg(x) Hy_ZHr

W,(u,e):=

where B, (x) C R” is the ball of radius € centered at x and u(x) is identified
with the point (u; (x), ..., u, (x)) of R”, etc.

For a (n — 1)-form u on Q and a subset C C Q, we consider the following
conditions:

Condition (o). Ww,_1(C) =0, u is locally (n — 1)-integrable on Q and
uniformly locally (n — 1)-integrable on a neighborhood of C.

Condition (). There exists some 0 < r < 1 such that p,,,_;(C) =0,
u is uniformly locally (n — 1)-integrable on Q and has the property that

(6.1) w,(u,e) =0(), ase—0,

at each point x of Q outside some closed, n,_;-negligible set A C Q.

Condition (y). There exists some 0<r<1 such that p,,,-,(C)
< + oo, u 1s uniformly locally (n — 1)-integrable on € and has the
property that

(6.2) w,(u,e) =o0(l), ase—>0,

at each point x of Q outside some closed, pn,_,-negligible set A C Q.

The main results of this section are the following.

THEOREM 6.3. Consider a complex-valued, locally (n — 1)-integrable
p-form u on Q. Let (C,), be an at most countable collection
of closed subsets of € such that, for each v and each associated
(n—1)-form u’ of wu, the pair (u’,C,) satisfies one of the conditions
(a)-(y) stated above. Furthermore, assume that for any multiindex J

olx }"n(Q)

.
8Q
at any x € Q\(u,C,).

Then, for each J, the restriction of u’ to any relatively compact open
subdomain of Q is integrally Lipschitz. In particular, u is exteriorly
differentiable almost everywhere on £J.

1
(6.3) limsup

< + @

THEOREM 6.4. Let u be a complex-valued locally integrable p-form
which is locally (n — 1)-integrable on € and let (C,), be a as in
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Theorem 6.3. Also, set A:= u,C, and consider a complex-valued
(p+ D)-form f in L'(Q,loc). Furthermore, assume that at least one of
the following conditions is fulfilled:

(1) A isclosed, u isintegrally continuous on Q\A and du = f in
the distribution sense on Q\A;

(2) u is exteriorly differentiable on Q\A and du,= f, at each
point x € Q\A.

Then du = f in the distribution sense on €.

REMARK 6.5. For integrally continuous forms u# such that the limit
in (6.3) vanishes for each J, Theorem 6.3 gives sufficient conditions for the
equality du = 0 to hold in the distribution sense on Q.

Moreover, in the case f = 0, Theorem 6.4 furnishes tests for a p-form
to be closed, too. Theorem 6.3 also gives absolute continuity criteria for
integrally continuous forms. In turn, these can be used to further improve
the main results of §4 and §5.

The proofs of these theorems will be accomplished in a series of lemmas.

LEMMA 6.6. Let u be a locally (n— 1)-integrable (n — 1)-form
on Q, f a locally integrable n-form on €, and let

(6.4) (P(Q)I=j u—” S
80 0

Jor Qe %#(Q). Also, let C be a closed subset of Q. If the pair

(u, C) fulfills one of the conditions (0)-(y) stated above, then the set C
is (¢, 0)-negligible.

Proof. If (a) is the fulfilled condition, then the statement follows from
an obvious variant of Lemma 4.2, (3). To complete the proof in the remaining
cases, let us consider 0 < r < 1 such that C has finite (# + r — 1)-dimensional
Hausdorff measure. Also, let A C Q with pn,_;(4) = 0 be the exceptional
set appearing in the statement of the conditions (B) and (y). Finally, we
fix a rectangle Q € Z(Q) and two small numbers ¢, § > 0.

Con51der now two paved sets P,R C Q such that Q ACCP and
Q NAC R Without any loss of generality we can assume that 0 < &
< dist(A4, OP) and that p,_;(8R) < 8. We can also assume that there exist
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finitely many cubes Ry, ..., R,, with diameters inferior to € so that (R,)}_,
1s a subdivision of P\ R and such that

Y diam(R,)" "' < tasr 1 (C) + 5 .
v=1
Next, let (Q;);e; be a subdivision of Q such that (Q;)ics, = (Rv)J_,

for some I; C I and that, for some I, C 1, (Q;)iers, 1S a subdivision of R.
We set J:=1, U I,. As a consequence, O, " A = & for each i ¢ J. Also,

Z@(Qi):Z:s u+“v u—“ f.
iel v=1 3R, 3R PUR

Going further, for v = 1, ..., m we fix some points x, € R, and set

u(x,):= Z (— l)i—lui(xv)dxl/\---/\@,-/\ e dx, .

5 u
E‘“V

where the sum runs over the faces of R,. For instance, if ¢ is a face of R,
on which x; = constant, then

Then

_ <Y

o}

§ (u - U(XV))
3R,

s (u - u(xv)) ‘ >

< sup | up(x) — ui(x,) | pao1(o) .

X€EOC

I s (Ul - Ul(xv))dle\"'/\dxn

All in all, we get that

j ;
dR,

for some positive constant ¢, depending solely on n. Adding up in v we

] .
j‘ u
aRv

Now, given 6 > 0, there exist €q,d¢ > 0 such that for any 0< ¢ < g,
0<8<8 we have ||f, . f|<8/3. Also, if 8, is sufficiently small,
from the uniform Ilocally (# — 1)-integrability of u we infer that
| §ou|<07/3.

< Cn 0y, (1, 8) diam(R,)" 71,

m

(6.5) )

v=1

< C(Mner-1(C) +8) max o (u,¢).

I1€vsm
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At this point, we fix €¢, 8¢ and, by (6.1) (or 6.2), respectively), conclude
that o, (4,€) = O(1) (or o(l), respectively) as €= 0, uniformly in v.
Using this, (6.4) and the assumptions concerning the size of p,.,-:(C),
we get | 5z 1| < 8/3, provided ¢ is small enough.

Summarizing, for ¢ and & as above, we see that | ¥._,0(Q;)| <6,
and the conclusion follows. [

LEMMA 6.7. Let u be a (n— 1)-form which is locally (n — 1)-inte-
grable on Q and has real-valued coefficients, and let (C,), be an at
most countable collection of closed subsets of € such that each pair
(u, C,) satisfies one of the conditions (a)— (y). Set A:= u,C, and
let f be a locally integrable n-form on Q, also having real-valued
coefficients.

If u s exteriorly differentiable on Q\A and u’'(x)< f(x) for
all x e Q\A, then

(6.6) s U< “ f
80 0

for any Q e Z#(Q).

Proof. Let us first assume that f is lower semi-continuous on Q. We
shall verify the condition (2) in Theorem 3.4 for the additive functions ¢
introduced in (6.3), and 7:= A,. To this effect, let us fix a € Q\ A and
consider a nested sequence of rectangles (Q,), such that n,Q, = {a}.
Since u is exteriorly differentiable at ¢ and since f is lower semi-continuous
it follows that

1 1
liminf U=u'(a) < f(a) < limsup f.
v A (Q) LQV v Q) HQ

Consequently,

liminf 2 (&)
v AR(QV)

<0

and the conclusion is provided in this case by the equivalence (1) & (2)
in Theorem 3.4.

Finally, as

” f =inf { “ g; & lower semi-continuous and > f } ,
o 0

the general case obviously reduces to the one just considered. []
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LEMMA 6.8. Suppose that wu,f, A, are as in the first part of
Lemma 6.6. In addition, assume that at least one of the following two
conditions holds:

(I) A is closed and [, u={[,f for any Qe #(Q) such that
OnNnA=yg;

(2) u is exteriorly differentiable on Q\A and du,= f, for all

Then
Proof. In the first case the assertion follows directly from Lemma 6.6

and Theorem 3.4. As for the second one, the conclusion is immediately seen
from Lemma 6.6. [

Jor any Q € Z#(Q).

LEMMA 6.9. Consider f = Y/, _,,,fsdx’ a locally integrable
(p+ D)-form on Q, and let u be a locally integrable p-form on Q.
Then du = f in the distribution sense if and only if du’ = f;dx,
A+ Adx, in the distribution sense for any J,|J|=p + 1.

Proof. For any smooth form v and for any |J| = p + 1, a routine
calculation shows that

dv’/ = (dv)jdx; A+ Adx, .

The general case then follows from this observation and a standard
regularization technique. [

Now we are ready to present the proofs of the main results of this
-section.

Proof of Theorem 6.3. The conclusions of the theorem are readily seen
from Lemma 6.6, Theorem 3.5 and Theorem 6.2. [

Proof of Theorem 6.4. Using Lemma 6.8 one can reduce matters
to p =n — 1, in which case the theorem follows from Lemma 6.7 and
Theorem 1.3. [
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In the last part of this section we shall present similar results for the usual
8 operator acting on differential forms. Let Q C C” be an open set, and let
E, E, u[,KdZI/\dEK

[I|=p |K|=

bea(p,g)-formon Q,0<p<n0<g< < n — 1. For any multi-indices 7, J
with |[I|=p and |J| =g + 1, we set

" N _
ulbdi=(=1Dr+r Y, (= 1)/°! (E efu; ) dz{L2mAdZ (A AdZ N dZ .
j=1

The forms u %7 are called the (n, n — 1)-forms associated to u. The concepts
of integral continuity, etc, are introduced for (p, g)-forms as in the real
case. We have the following.

THEOREM 6.10. Let u be a locally integrable, complex-valued form
of type (p,q), which is also locally (n — 1)-integrable on an open
subset Q of C". Let (C,), be a sequence of closed subsets of €
such that each pair (u%7,C,) satisfies one of the conditions (a)-(Y).
Also, let A= u,C, and let f be a locally integrable form of type
(p,g+1) on Q.

Assume that at least one of the following conditions is valid:

(1) A is closed, wu is integrally continuous on Q\A and du = f
in the distribution sense on Q\A;

(2) u is exteriorly differentiable on Q\A and du, = fx at each
point x € Q\A.

Then du = f in the distribution sense on Q.

The proof is completely similar to the proof of the Theorem 6.4, hence
omitted.

~ REMARK 6.11. For f =0 we obtain tests for a (p, g)-form to be
d-closed, and for p = g = 0 tests for a function u to be holomorphic. The
latter are well-known and due to Pompeiu [Pol] in the case n = 1. Our
theorem also extends the holomorphy tests of [BM] and [Shi] in the case
n > 2. Note that for n =2, p=q=0, A = ¢ and f = 0, we obtain the
classical Goursat lemma.

Before we conclude this section, let us note that Theorem 6.3 naturally
extends to the several complex variable setting and that this can also be used
to obtain holomorphy criteria (cf. also [L]).
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