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as ¢ (Q) = 0 for any Q of the types (1)-(2) described above, and since ¢ is
additive, it follows that y(Q?) = ¢(Q;) for any i € J. In particular,
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By (4.2), the uniformly local (n — 1)-integrability of u, the integrability
of u on »Q and the integrability of f on Q, the right hand side of the above
equality can be made arbitrarily small, provided Y. 1,-1(Q)) 1is
sufficiently small. However, since A" has Lebesgue measure zero in R7-1,
this can be readily taken care of and this completes the proof of the
theorem. [
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REMARK 4.3. As an inspection of the proofs shows, Theorem 4.1
and Lemma 4.2 continue to hold in the case when the locally (n — 1)-integrable

form wu is wuniformly (n — 1)-integrable only in a small neighborhood
of & (u).

5. THE GLOBAL FORM OF THE STOKES FORMULA ON C! MANIFOLDS

In this section we shall present a coordinate free version of the main result
of section 4. Throughout this section, we let M be a fixed, oriented, Hausdorff,
differentiable manifold of class C!, and real dimension 7.

DEFINITION 5.1. A subset Q of M is called a C' domain if for
any a € Q\Q, there exist an open neighborhood U of a in M and

a C' diffeomorphism f = (fi,f2,..»fn) of U onto an open
neighborhood V of the origin in R?", such that

UnNnQ={xeU;f,(x)<0}.

Clearly, the border of the domain Q,bQ := o\ O is either the empty
set or a (n— l)-dimensional C!-submanifold of M assumed with the
standard induced orientation. Note that a simple application of the implicit
function theorem shows that any C! domain is also a Lipschitz domain
in R”.

It is not difficult to see that the class of Lipschitz domains described
in Definition 1.1 is not invariant under the action of bi-Lipschitz diffeo-
morphisms of R”. In particular, Theorem 4.1 cannot be reformulated
invariantly. To remedy this, for the rest of this section we shall slightly adjust
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our previous definitions to the C! framework by carrying out the following
simple modification. That is, whenever applicable, we shall replace “Lipschitz
embedding’ by “C'-embedding”, i.e. Lipschitz embeddings which are C'!
functions. Note that, in particular, the condition (1.1) is in this case equivalent
with the continuity of the functions

oh(s, x)

Sxw—-Q, i=1,2,...n—1.
ax,-

Assuming this modification, all the previously introduced notions become
invariant to C! diffeomorphisms and, hence, meaningful on C! manifolds.
More specifically, we make the following.

DEFINITION 5.2. Let Q bea C! domainof M. A (n-—1)-form u
is said to be absolutely continuous (uniformly (n — 1)-locally integrable)
on Q if for any point P e Q there exists a local coordinate map
h:U—-R" of M with PeU such that (h-Y)*u is absolutely
continuous (uniformly (n — 1)-locally integrable, respectively) on h(U n Q).

Let u and f be locally integrable forms on M, having degrees (n — 1)
and n, respectively. Recall that du = f on a open set Q of M in the distribution
sense, if for any ¢ € C}(Q),

s d(p/\uz—j of .
M M

THEOREM 5.3. Let Q be a C!' domain of M, and u a
(n — 1)-form compactly supported in M. Assume that u is uniformly
(n — 1)-locally integrable and absolutely continuous on Q, and that the
singular set

F(u) = (Q\Q) N sup u

has (n — 1)-dimensional Hausdorff measure zero.
If u isintegrable on bQ and du (taken in the sense of distribution
theory) is integrable on €, then

IS

Proof. Using a smooth partition of unity and then working in local
coordinates we can assume that M = R”. In this case, the conclusion is
provided by Theorem 4.1. [
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Note that, here again it suffices to have the “uniform” part of the local
(n — 1)-integrability condition for u fulfilled only on a small neighborhood
of & (u) (cf. also Remark 4.3).

DEFINITION 5.4. A closed subset A of M s said to have an almost
regular boundary if A coincides with the closure of its interior and if there
exist a family (S;)ic; of C' submanifolds of M and a locally finite
family (C));c: of compact subsets of M such that:

(1) C;CS;, for any iel, and Co‘im Coijz o5, for all 1+#]
(the interiors are taken in S, and in S;, respectively);

(2) CinC; has (n— 1)-dimensional Hausdorff measure zero for
all i+ j;

(3) 0A = vU,;;C;.

Note that if A has an almost regular boundary, then

Q:= AO U ( U é i)
iel
(the interior of A is taken in M) is a C! domain with border bQ = U, ICO’i.
If u is an integrally continuous (n — 1)-form on M, it follows that u is
integrable on each oriented submanifold Co,- (with the standard orientation
induced by /i). Since 0C; has zero measure in S;, we can define

j u:= Zj u
9A iel 81’

whenever A n supp # is compact. Hence, without further proof, we can
state the following.

THEOREM 5.5. Let A be a subset of M with an almost regular
boundary. If wu is a (n— 1)-form which is uniformly (n — 1)-locally
integrable on M, absolutely continuous on M, and for which A N supp u
is compact, then u is integrable on 8A,du is integrable on /(1’ and
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