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HIGHER EULER CHARACTERISTICS (D) 15
3. SOME CALCULATIONS

In this section we give some computations of y;(X) and )T(_ 1 (X) which
make use of explicit cell decompositions of the universal cover, X, of X. The
simplest non-trivial example is the circle, X = S!, which is treated in (A).
In (B) we consider aspherical 2-complexes, X, arising from groups with
two generators and one defining relation. In (C), X is a 3-dimensional lens
space with odd order fundamental group; in fact, the computation there is
already implicit in [GN,, §5(B)]. In (D), X is the real projective plane.

(A) FINITE GRAPHS

A finite connected 1-complex, X, is aspherical so by Propositions 1.3
and 2.4, T = n,(4(X),id) is trivial unless X has the homotopy type
of S'. Take X to be S! with one O-cell, v, and one 1-cell, e. Then X is the
real line with the usual CW structure. Orient v by + 1 and e by u — e?™i,
Let t € T=mn,(S',v) be represented by the loop u > e —27 (this generator
of T has been chosen for compatibility with §6). Recall that we use the right

action of T, so
~ [0 r—1
q = .
0 0

The matrix DRl corresponding to positive rotation, R;:S! x I— S!,
through 27 (the first “tumble” in the language of §6) is

D[Rﬂ:[o 0 ;
1 0

note that the Sign Convention of §1 is used here. Thus Xl(Sl)([Rl])
is represented by (f—1)® 1 which is homologous to 7® 1, and
x1(S')([R;]) = {t}. Now, [R;] generates the infinite cyclic group T.
Making the standard identifications of T and T with Z (i.e. identifying [R,]
and 7~! with 1 € Z), we obtain:

Example 3.1.  y,(S'): Z — Z is multiplication by — 1.

Remark. The circle belongs to the classes of spaces considered in §4
and §6, so the methods there also apply.

(B) GROUPS WITH TWO GENERATORS AND ONE RELATION

Let X be a finite 2-complex with one vertex, v, and one 2-cell, eZ2.
We further assume that X is aspherical. By Lyndon’s theorem [Ly], this
is the case if and only if the element of the free group defined by the
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attaching map of the 2-cell is not a proper power. As in (A), the group
' = Z(n,(X,v)) is trivial unless X has two 1-cells, ei and e; (otherwise
x(X) # 0), so we assume this.

The case when X is homotopy equivalent to the 2-torus is exceptional.
The following calculation is a special case of Example 6.15. Alternatively,
the same result can be obtained by the method of Example 3.8 below.
See also Corollary 4.8.

Example 3.2. Let X be homotopy equivalent to the 2-torus. Then
x1(X) = 0. Consequently, Proposition 2.8 implies ¥, (X) = 0.

In all (aspherical) cases other than the 2-torus, I" is known to be either
trivial or infinite cyclic [Mu].

Orient v by + 1, and choose orientations for the the other cells. There
1s a corresponding presentation <{Xx;, X, ‘ ry of G=mn,(X,v), where Xx;
denotes the element of G represented by the oriented loop e;, and r is the
attaching word in {x} with respect to the chosen orientation on eZ2.
Choose lifts of the cells so that:

8,(e)y=(;— 1o and 8,(e¥)=—é&,+—e,.

We have written these in terms of the left action of G because we are using
the free differential calculus [B, p. 45] which is traditionally done in terms
of left actions. We will then convert to right actions using the involution
«:2G— 2G, Y .nigi— ¥ ng .

For vy € Z(G), there is a unique (up to homotopy) cellular homotopy
F7:idy — idx. The track of the basepoint presents y as a word in {x;°}, and

ox, 0Xx,

There are 6, 6, € ZG such that b’{(’é,-) = ¢;e 2. Thus the relevant matrices
are:

( . )*— ( = )*

1_1x2—1_1], 622 0, ’ [)0= ox
or\* ay \*
(BXZ) - (8)(2)

61 = [x1_

and 131 = [of o¥]. So XI(X) (v) is represented by the chain:

1 ﬁ * _ai * *]
oo (2) () s ]

2

(3.3) trace(d ® D) = Y.

i=1
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By Proposition 2.1, this implies:

2 Ay ar
X)) () = X _S(E—)A(xi)-g(ci)A (a_)]

i=1 Xi i
where ¢: ZG — Z is augmentation. For any g € G represented by the word w
ow

in {x*}, A(g) = Li_¢ (6 )A(xj). Substituting, we get:

J
or

xjaxi

LX) ()= A - X 8(01')5(

1<i,j<2

)A(Xj) .

The fact that D3 — dD = I~(1 —n,(y) 1) yields six equations in ZG. It 1s
straightforward to check that when € is applied to these they reduce to:

) or
LEMMA 3.4. Forall 1<i,j<2,¢e(o;)¢e (8_) =0. [

Xj

0 0
The chain complex Cy(X) is Z 37 ® Z — Z where

8,(1) [ ar or ]
=lel—1), e|—
’ dx1 9
and 8, =0. If H,(X)=0 then 8, #0, and by Lemma 3.4, &(o;)
= g(0,) = 0. Hence:

PROPOSITION 3.5. If H,(X)=0 then % (X)=—-A. [

If H,(X) # 0 then 9, = 0. In this case we may regard A (x;) and A4 (x;)

as a basis for the free abelian group G,,. Writing H(r) for the Fox Hessian
2r

matrix of r, namely H(r)ijzs( ),and H(r)! for its transpose

ax; ij
we have:

PROPOSITION 3.6. If H,y(X) # 0 then

A(xy)

.
A(x2)

1 (X) (v) = —A(y) — [e(o1) 8(02)]H(r)’[
The matrix H(r) can be computed once we are given the relation r.
The integers €(c;) and €(o;) depend on vy; in general, they are hard to

compute although we will do so in some special cases (see Examples 3.8
and 3.9 below).
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The matrix H(r) is determined by the cup product H!(X) ® H!(X)
- H?2(X):

PROPOSITION 3.7. Assume Hy(X) #0. Let {A(x)),A(x;)} be the
dual basis for H'(X). Then H(r); = (A(x;) v A(x))) ([e2]); hence:

1 X) ()= —A®) - (AG) UA(x) ([e2]) (e(o1)A(x,) — e(02) A (xy))

Proof. This is the same formula given by Definition B, (note that
H., (X) is free abelian and so Definition B; applies to integral coefficients).
A direct proof of Proposition 3.7 is also possible. [

Example 3.8. G = (x;,x, | x;x7'x5'x;™y, m > 2. Here, Z(G) is gene-

or
rated by x{', and H,(X) # 0. One calculates: o = (x, - D) L) X,
X1

—=1-x",— =¥, x, v _ 0, 6,=0 and o,=1. (Actually,
0x, 0x, 0x,

one sees these values for the sigmas intuitively and then one checks that the
resulting D gives the right answer.) Thus 5(1(X ) (x7') is represented by the
cycle (x;'-D® X", x1 + (1 —x‘m) ® 1 which is homologous to
the canonical form: x; ' ®x; (L7 'x/H)+x" ' @x7" Vx ™ It
follows that (see §2) X,(X)(x7)e HH,(ZG)= @ ceo, Hi(Z(gc))
has [x;']-summand —{x;} € H,(Z(x;"), for 1<i<m -1, and
[x; "]-summand (m — 1){x,} € H;(G) = G,; here, [g] denotes the con-
jugacy class of g. By Proposition 2.1 (or 3.6), %;(X)(x{) = 0. It is not
difficult to see that X, (X) is not an inner derivation. In particular, the first
order Euler characteristic is zero, while %;(X) # 0.

EXAMPLE 3.9. G = {x,, X, |x['x}y, m # 0 and n # 0. (If m and n are
relatively prime, then G is the group of the (m, — n) torus knot.) Here, Z(G)
is generated by x" = x5 ", and H,(X) = 0. By Proposition 3.5, x; (X) (x])
= —mA(x;) = nA(x;). It is also of interest to calculate X,(X)(x7).
We get({ja—):1 =y txl, -86;2 =x] Y4 x5, :}Z = yrtx, :—)ZZ =0,6,=0
and o, = xz — 1. Thus X,(X) (x{") is represented by the cycle (x;'=1)
@ T x + (X020 x, )x{ " ® (x; ' — 1) which is homologous to the
canonical form:

n-1

; -1 —m=1) -
Z (Xl X x1x, )+ E (x2®x2 x3) + x7 ®x1(m )xlm

+x2®x2"
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(C) LENS SPACES

Let (p,q) be a pair of relatively prime positive integers with p > 1.
The lens space L(p, q) is the orbit space of the action of the cyclic group
Z/p = {x|x? = 1) on the 3-sphere S* = {(z0,21) € C2||zo|?> + |21 |2 =1}
defined by x(z0, z1) = (e2™/? 7y, e*™9/7z;). The point in L(p, q) determined
by the orbit of (z0,z;) € S* will be denoted [z¢, z1].

For any pair of integers (m, n) such that m = n mod p define a smooth S
action v, ,: S' X L(p, )~ L(p, q) by e?™®[z,,7,] = [e?™0m/P 7y, 27019/ 2,].
These actions represent elements of I' = n,(Z(L(p, q)), id).

The group HH,(Z[Z/p]) is isomorphic to a direct sum of p copies
of Z/p; furthermore, the Hochschild 1-cycles {x @ x~1~%|k =0, ...,p — 1}
project to a set of generators for HH,(Z[Z/p]). Define ¢;,d; € Z for 0 < i
<p-1lbym—-i-1=(;—D)p+bjand ng—i—1=(d;,—1)p+ b
where 0 < b;, b/ < p — 1. Let s = cx—; + rdxg-1, where the indices are
interpreted mod p and rqg = 1 mod p.

There is a natural cell structure on the universal cover, S3, of L(p, q)
(see [GNy, §5(B)]). Using this cell structure, [GN;, Lemma 5.3] asserts:

PROPOSITION 3.10. X;(L(p,q)) ([Ym.n)) € HH,(Z[Z/p]) is repre-
sented by the Hochschild cycle — Y?_ syx @ x— 1% [

Remark. We take this opportunity to correct some inadvertently
omitted minus signs from the computed examples in [GN,, §5]. In
order to conform with our Sign Convention (see §1) used both here
and in [GN,], the various chain homotopies D appearing in the explicit
computations of [GN;, §5] should be replaced by ~D. Consequently,
in [GN,, Lemma 5.3], [GN,, Proposition 5.4] and [GN,, Corollary 5.5]
B(Ym,n)s R(Ym, ) and L(yn,,) should be replaced by — B (v, »), — R(Ym,»)
and — L(yn, ,) respectively. Similarly, R(F,) should be replaced by
— R(F,) in [GN,, Theorem 5.1] and R(®,) should be replaced by — R(®,)
in [GN,, §5(C)].

The homomorphism e: HH,(Z[Z/p]) » H,(Z/p) takes the generators

{x ® x~17%} to the same generator, a, of H,(Z/p). From the proof of
[GN,, Corollary 5.5], we deduce:

PrROPOSITION 3.11. %, (L(p, @) ([Ym.2)) = — (m + n)a. [

If p is odd then Propositions 3.10 and 3.11 give complete computations
of %1 (L(p, q)) and x,(L(p, q)) respectively because the [Ym, n]’s generate T;
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indeed by [GN,, Proposition 5.7], for odd p, T is cyclic of order 2p?. The
proof there also shows that 2[y, ;] is of order p? and that p[y,, ,] is of
order 2 in I', so [y, .. ,2] generates I'.

(D) THE PROJECTIVE PLANE

We saw that when X is aspherical and y(X) # 0 then I' = 0 and so our
first order invariants vanish. In the presence of non-trivial higher homotopy
these invariants need not vanish, despite % (X) # 0, as demonstrated by the
example of the real projective plane X = P2.

Write G = nn;(P?) = Z/2; denote the generator of G by ¢. Give P2
the customary cell structure consisting of one cell in each of dimen-
sions 0, 1, and 2. The universal cover P2 is naturally identified with S? and
the corresponding cellular chain complex is:

1+¢-1 r—1—1
C2(S?) = Ci(SH) — Co(SY) .
Every element of I' can be represented by a basepoint preserving
homotopy F:P2?x I— P2 with F, = F, = idp.. We have F, = F, = ids
because the basepoint is preserved. It is easy to verify that the corres-
ponding chain homotopy ﬁ*;c*(gz)_) C«(S?) is then zero on Cy(S?)
and takes e; to e,m(l1 —¢-!') where m € Z. By elementary obstruc-
tion theory, there exists F = F(" realizing any m e Z. In this case
trace(é & [)) ={1+¢t")Y®mA~-1¢t"1) which is homologous to the
canonical form mt- '@ tt-!' —mt-1®¢r=2. Since yP?*) =1=%0,
the Gottlieb group M, () = Z(P2) = 0 and so the derivation X 1(P?) is a
homomorphism and need not be distinguished from its cohomology class
Yi(P?) e H(I',HH,(Z(Z/2))) = Hom(T', HH,(Z(Z/2))). It follows that

(P (Fm) =(m, —m)eZ/2®Z/2=HH (Z(Z/2)) .

In particular, when m is odd %, (P2?) ([F]) # 0. On the other hand, this
shows y;(P?) = 0.

4. S'-FIBRATIONS

In this section we investigate the first order Euler characteristic of the
total space of an orientable Serre fibration with S!-fiber.

Let S! > X > B be an orientable Serre fibration where B is a (not
necessarily finite) connected CW complex and X has the homotopy type
of a finite complex. By classical obstruction theory, fiber homotopy
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