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4. THE GLOBAL STOKES FORMULA FOR SIMPLE LIPSCHITZ DOMAINS IN R”

A (n — 1)-form u on R7 is said to be uniformly locally (n — 1)-integrable
on Q C R7if it is locally (n — 1)-integrable and, for any compact subset K
of R” and any € > 0, there exists a positive 8 = & (K, €) such that

(4.1) \ S U
C

whenever C is a (n — 1)-dimensional Lipschitz submanifold C of R” which
is contained in K N Q and has p,_;(C) < 4.

Examples include (n — 1)-forms with locally bounded coefficients, or
exhibiting isolated singularities of the type || x|| ¢, 0 < n — 1.

Let us recall the notion of simple Lipschitz domain introduced in the last
part of Definition 1.1. The main result of this section is the following.

<&

THEOREM 4.1. Let Q be a simple Lipschitz domain in R”", and
let u be a compactly supported (n — 1)-form in R”" which is uniformly
(n — 1)-locally integrable on R". Assume that u is absolutely continuous
on Q and that the singular set

F(u):= (Q\Q) N supp u

has (n — 1)-dimensional Hausdorff measure zero.
Then, if u is integrable on bQ and du (in the distribution sense)
Is integrable on Q, we have

RS

To prove this theorem, we shall need an auxiliary lemma. Two
Lipschitz domains Q,;,Q, in R” will be called almost transversal if
L, (DQ N bQ,) =0. Let Q be a Lipschitz domain in R” and let % stand
for the collection of all rectangles of R” which are almost transversal to Q.
Next, assume that u is a (n — 1)-form compactly supported on R”, uniformly
locally (n — 1)-integrable on R”, and integrable on bQ. Also, let f be a

locally integrable n-form on R” and consider the complex-valued mapping ¢
defined on % by

(P(Q)1=§ U+j u_jj 7.
0nbO 3 nao 0nQ



234 M. JURCHESCU AND M. MITREA

LEMMA 4.2. Let Q, %,u,f,¢ be as above and assume that
F(u):= (Q\Q) nsuppu has Hausdorff (n— 1)-dimensional measure
zero. Then the following hold.

(1) % together with the usual subdivisions is a full rectangular system
on R~”.

(2) If P isa %-paved setand (Q;);c; is a subdivision of P, then

Z(p(Q,-)=§ u+§ u—” f.
iel B Abo S nop PNQ

In particular, ¢ is additive.
(3) The set ¥ (u) is (¢, 0)-negligible.

Proof. For each k=1,2,...,n, let A, be the collection of all c e R
having the property that

Lo ({x= (1,00, x,) €0Q5x,=¢}) >0

Since A, (bQ) = 0, it follows by Fubini’s theorem that A, has Lebesgue
measure zero in R for any k.

Consider now Q,R;,...,R, € % such that R, c Q for all v. Let
(ay,...,a,) be the origin of Q, and (b,,...,b,) the end-point of Q.
Similarly, for each v, (aj, ..., a,) will stand for the origin of R,, whereas
(b}, ...,b,) will denote the end-point of R,. The almost transversality
hypothesis implies that ay, by, a;, b, € R\ A, for all v, k.

Now, since A;(A;) = 0, for any a priory given € > 0, we can select a
finite sequence of real numbers xz,ak e R\A,,a, =0, ..., pr, such that

\% \%
A = Xp o< " <Xy, = by,
v —_yV —-1/2
lxk,ak_l xk,CLkl < En b

and, finally, so that a; and b) are among the numbers {x; , },, . It is

then easy to see that, for € sufficiently small, the rectangles

PR

n
Q.o = I1 Xk, 0,y Xk 0, ], With 1 < oy < pie
k=1

form an elementary subdivision of Q which contains a subdivision of R,
for each 1 < v < m. This completes the proof of (1).

Going further, (2) is immediate in the case in which the family (Q;);ic;
comes from an elementary subdivision of a larger rectangle containing P.
Thus, the general case then easily follows from this and (1).
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Next we turn our attention to (3). Fix Q € #, K a compact subset of
Q\ &(u) and € > 0. Since &(u) has (n — 1)-dimensional Hausdorff measure
zero, it is thus possible to select finitely many rectangles Ry, ..., R, € 4
which do not intersect K, their interiors cover Q n & (u), and such that

m

E un—l(aRv) <eg.

v=1
Then P:= u,(Q N R,) is a Z-paved set contained in Q which does
not intersect K and has the property that p,_,(8P) <e. Since # is
full, we can find an elementary subdivision (Q;);.; of Q and a subset J
of I for which P = U;.;0Q;. In particular, we note that this implies
Q:n F(u) = @ for i e I\J. Using (2), we can write

E@(Qf)=§ u+$ u——“f.
ied Igr\bQ émaP P

Now, since u is integrable on bQ and f is integrable on Q, the first and the
third terms from above can be made arbitrarily small by choosing K large
enough. Furthermore, by taking & sufficiently small and using the fact
that u is uniformly locally (n — 1)-integrable, the second term can also be
made arbitrarily small. The proof of the lemma is therefore finished. [

Proof of Theorem 4.1. Since in the conclusion of the theorem u intervenes
only through its values on Q, there is no loss of generality assuming
that u = 0 on R”\Q, i.e. that suppu C Q (note that thls does not alter
the hypotheses either). We set f:= du in Q Zero in R”\Q and adopt the
notation introduced in Lemma 4.2. Clearly, it is enough to prove that
©(Q) =0 for any Q € #. First, let us observe that from (the proof of)
Theorem 1.3 this is immediate for rectangles of the following two types:

(D QCf)oru=OonQ;

(2) after suitably permuting the coordinates in R”,
ONQ={x=&"x,);x"€e Q" and a,<x,<0(x')<b,},

where Q = Q’ X [a,, b,] and 6:R"-! = (a,, b,) is a Lipschitz function.
On the other hand, the compact set &(u) has zero p,._;-measure and,
hence, by Lemma 4.2, is (9, 0)-negligible. Consequently, using Theorem 3.4
with s = ¢ = 0, it suffices to show that any point @ € bQ has an open neigh-
borhood % in R” such that @ (R) = 0 for all rectangles R € & included
in % and containing a. By possibly relabeling the coordinates first, we can
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find an open rectangle U in R” and a Lipschitz function 6: R”-!— R
such that

UnNnQ=Un{x=((x",x,);x,<0(x")}.

Now let R =R’ X [a,,b,] € # be a fixed rectangle contained in U,
where R’ is a rectangle in R”-! and a,, b, € R, a, < b,. Denote by %’ the
collection of all rectangles Q' from R”~! which are contained in R’, having
pQOQ)Y<pR)+1 and such that Q' X [a,,b,] € Z. Then, with the
usual subdivisions, (%, div) becomes a rectangular system on R’.

Next, we introduce the mapping y: #’ — C by setting

V(@) :=0(Q" X [a,, b,]), Q'€ Z’

Thus, everything comes down to proving that y vanishes identically on % °.
Let us consider the following compact set in R”:

A':=R'" n (0671 (a,) ub-1(b,)) .

If a rectangle Q' e #’ does not meet A’, then the rectangle
Q' X la,,b,] € % is either of type (1) or (2) from above, so that,
at any rate, y(Q') = 0.

Since ¢ is additive, so is y and, by the equivalence (1) ¢ (3) in
Theorem 3.4 with s = ¢ = 0, it suffices to prove that A’ is (y, 0)-negligible.
To this end, let Q' e #’ and let (Q]);c; be a subdivision of Q’ such
that §,:= diam(Q;) < 6, for all i, for some positive 6. We also introduce

J:={ie;Qn(® (a,)ub-1(b)) = T} .

For each i€ J we have that at least one of the sets Q/n 08-!(a,),
Q!N 8-1(b,) is empty provided & is sufficiently small. Assuming that this is
the case, we set

Qi:=Q; X la,,a, + 6;M]
if @/ n 0-1(a,) # &, and
Qi:: Qllx [bﬂ - 6iM9 bn] )

if Q/n6-1(b,) # . Here M stands for the (essential) supremum
of | V8 |on R’. Then P := uU;.,0;is a #-paved set having

(4.2) ba-1(®P) < C Y a1 (Q))

ielJ

for some positive constant C depending exclusively on 6 and R’. Furthermore,
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as ¢ (Q) = 0 for any Q of the types (1)-(2) described above, and since ¢ is
additive, it follows that y(Q?) = ¢(Q;) for any i € J. In particular,

QnaP PAbQ PNQ

By (4.2), the uniformly local (n — 1)-integrability of u, the integrability
of u on »Q and the integrability of f on Q, the right hand side of the above
equality can be made arbitrarily small, provided Y. 1,-1(Q)) 1is
sufficiently small. However, since A" has Lebesgue measure zero in R7-1,
this can be readily taken care of and this completes the proof of the
theorem. [

Y w@) | =lo@|< + +

ield

REMARK 4.3. As an inspection of the proofs shows, Theorem 4.1
and Lemma 4.2 continue to hold in the case when the locally (n — 1)-integrable

form wu is wuniformly (n — 1)-integrable only in a small neighborhood
of & (u).

5. THE GLOBAL FORM OF THE STOKES FORMULA ON C! MANIFOLDS

In this section we shall present a coordinate free version of the main result
of section 4. Throughout this section, we let M be a fixed, oriented, Hausdorff,
differentiable manifold of class C!, and real dimension 7.

DEFINITION 5.1. A subset Q of M is called a C' domain if for
any a € Q\Q, there exist an open neighborhood U of a in M and

a C' diffeomorphism f = (fi,f2,..»fn) of U onto an open
neighborhood V of the origin in R?", such that

UnNnQ={xeU;f,(x)<0}.

Clearly, the border of the domain Q,bQ := o\ O is either the empty
set or a (n— l)-dimensional C!-submanifold of M assumed with the
standard induced orientation. Note that a simple application of the implicit
function theorem shows that any C! domain is also a Lipschitz domain
in R”.

It is not difficult to see that the class of Lipschitz domains described
in Definition 1.1 is not invariant under the action of bi-Lipschitz diffeo-
morphisms of R”. In particular, Theorem 4.1 cannot be reformulated
invariantly. To remedy this, for the rest of this section we shall slightly adjust
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