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Hence, on account of the continuity of p, we see that \Qd\x for

any Q. With this at hand and by once again using the hypothesis (4), we

conclude that p is absolutely continuous with respect to the «-dimensional

Lebesgue measure Xn. Therefore, if /eL^Qjloc) denotes the Radon-

Nikodym-Lebesgue density of p with respect to X„, we have that

[
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for any Q e JP(Q). Using this, Theorem 1.3 finally implies that du f in the

distribution sense on Q, and this concludes the proof of the theorem.

Remark 2.2. Inspection of the proof also shows that p(.K)
\K I /1 dXn for any compact subset K of Q, and that | /1 ^ g a.e.

on Q.

An integrally Lipschitz (n - \)-form in Q is a locally (n - l)-integrable
form « for which there exists M > 0 so that

<MX„(Q)

for each Q e &(Q). Note that any integrally Lipschitz (n - l)-form u in Q
satisfies the equivalent conditions in Theorem 1.3.

3. A MAXIMUM PRINCIPLE

The purpose of this section is to prove a localization theorem which plays
a significant role in the sequel. Here, our approach is of an abstract nature.

Let c& be a fixed metric space. In general, for an arbitrary set E, we
shall denote by yçE) the collection of all finite families of subsets of E,
and by 9"(E) the collection of all subsets of y(E).

Definition 3.1. A rectangular system on At? is a subset & of
compfA together with an application div:^-> :7\.A) satisfying the
following:

(V If Q £ & and (Qi)ieI e div(Q), then Qi Q Q for any i e I;
(2) For any Q e & and any s > 0, there exists (.Q/)/e / e div(Q)

so that diam(<2/) < s for every i e /.
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The elements of will be called rectangles, whereas the elements of
div(Q), for Q e 1%, will be called the subdivisions of Q. Later, we shall also
need the following.

Definition 3.2. A rectangular system (^, div) is said to be full if
for any Qe M and any Rx, Rm e & with Rv c Q, 1 ^ v ^ m,
there exists a subdivision (Q/)/e/ of Q and, for each v, a subset 7V

of I suchthat (Q/)/e/v is a subdivision of Rv.

Let div) be a rectangular system on A complex valued function cp

defined on M is said to be additive if (p(Q) — D/6/(p(Q/) for any
subdivision (Q/)/ 6 / of Q. Similarly, a real-valued function 5" defined on & is

called subadditive if s(Q) ^ E/g/^CQ/) f°r any subdivision (Q/)/e/ of Q.
The function s is called superadditive if — s is subadditive.

Definition 3.3. Let (p be additive and s superadditive on M.
A subset A C <££ is said to be (cp, s)-negligible if for any Q e M and

any 8 > 0, there exist a subdivision (ß/)/6/ of Q and a subset J
of I so that Qi n A 0 for any i e I\J, and such that

Z <P (Qi)< Z + S

We are now in a position to state in precise terms the localization principle
alluded to in the introduction.

Theorem 3.4. Let (.^, div) be a rectangular system on the complete
metric space <L&. Also, let (p be an additive function on s a super-
additive function on and let A C be a countable union of
(cp, s)-negligible subsets of LL. The following conditions are equivalent:

(1) I cp (Q) I ^s(Q) for all QeM;
(2) there exists a positive, superadditive function t on M so that

I <P (Ô) I ^ s(Q) whenever t(Q) 0 and such that, for any nested sequence

of rectangles (ßv)v having t(Qv)>0 for all v, and nvQv {a}
for some a e <£?\ A, we have

r J <p(ôv) I - S(Qv) ^ Alimmf < 0 ;

f(ßv)
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(3) there exists a positive, superadditive function t on .3$ and,

for any a e <£'\A and any s > 0, an open neighborhood # of a

in &F such that

I cp(Q) I ^ s(Q) + zt(Q) »

for any rectangle Q included in % and containing a.

Furthermore, the above conditions still remain equivalent with | cp • I

replaced by cp.

Note the analogy of this result with the maximum principle from

potential theory (the additive and subadditive functions correspond to the

harmonic and subharmonic functions, respectively, whereas % appears as a

kind of ideal boundary of M).
Let us also point out that for t constant, Theorem 3.4 is essentially

a principle for passing from local to global, while for t constant a principle
for passing from infinitesimal to global.

Proof of Theorem 3.4. Obviously, (1) implies (2). Moreover, a straightforward

reasoning by contradiction shows that any function t satisfying
the hypothesis (2) will automatically do for (3).

We are therefore left with (3) => (1). Once again, we shall reason
by contradiction. To this effect, assume that there exists a rectangle Q
such that I cp(2) | > s(Q). In particular, this implies that t(Q) > 0. Now
fix s > 0, small enough so that

I <P(Ô) I - s(Q) > e*(Q) »

and set sv : (2 _ 1 + 3 ~ 1 ~v)e. Let A u^0v4v, where Av is a (cp, s)-negligible

subset of for each v e N. In particular, since A0 is (cp, s)-negligible,
there exist a subdivision (2/)/e/ of Q and a subset J of I for which
Qi n A0 0, when i e A/, and such that

(3.1) £ <p ^ E s(Ô,-) + l<p(Q)|-.s(ô)-e/(Q).

Next we claim that we cannot have | cp(2/) I s(Qi) + £(T(2/) f°r all
/ e I\J. To prove the claim, we remark that since t is positive and super-
additive, this would lead to

E I<P(Q/)I< E s(Q0 so E tiQi)
^ /e/\j i e I\J ieI\J

< E s+ £o
/ 6 I\J
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In turn, since (p is additive and 5 superadditive, a simple combination
of (3.1) and (3.2) would imply that 0 ^ 80t(Q) - zt(Q), which is a
contradiction. Consequently, one can find an index i0 e I\ J for which

I <p(Ô/0) I > s(Qio) + sot(Qio)

Because Qio and A0 are disjoint it follows that it is possible to find a

rectangle R0 c Q which does not intersect A0, has diam(i?0) < 1, and
such that

I q>(£<>) I ^ s(ßo) + Eo^O^o) •

Continuing this inductively, one can construct a sequence of nested

rectangles {i?v}v such that Rv does not meet Av, diam(i?v) ^ 2~v, and

I cp(Rv) I > s(Rv) + 8vt(Rv) ^ s(Rv) + - t(Rv)
2

for any v e N. But then nvi^v — {a} for some a e A and this

contradicts (3). The proof is finished.

We shall also use the following version of the Theorem 3.4.

Theorem 3.5. Let (J5, div), A, cp, s be as in Theorem 3.4 and

assume that t is a positive, superadditive function on M. Then, the

following conditions are equivalent:

(1) for any relatively compact open subset Q of there exists

M > 0 such that | cp(Q) | ^ s(Q) + Mt(Q) for all Q e M with Q c Q;

(2) I cp (Q) I ^ s(Q) whenever t(Q) 0 and for any nested sequence

of rectangles {Qv}v having t(Qv) > 0 for all v, and nvQv {a}

for some a e A, we have

v
l<P(Qv) I - *(Qv)

limsup < + oo ;

t(Qv)

(3) for any a e <s£\ A there exist an open neighborhood % of a

in <& and M > 0 such that

I <P(Ô) I < s(Q) + Mt(Q)

for any rectangle Q included in % and containing a.

The proof is quite similar to that of Theorem 3.4 and we omit it.
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