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PLURIDIMENSIONAL ABSOLUTE CONTINUITY
FOR DIFFERENTIAL FORMS
AND THE STOKES FORMULA

by Martin JURCHESCU and Marius MITREA
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INTRODUCTION

The concept of absolute continuity for functions of one real variable
(defined on an open set Q C R) arises very naturally in connection with the
problem of characterizing the largest class of functions «: Q — R for which
there exists f e L1 (Q, loc) such that the Leibnitz-Newton formula

b

(0.1) u(b) — u(a) = s f(x)dx

holds for any interval [a, b] C Q. Lebesgue’s solution to this problem,
i.e. that (0.1) holds if and only if u is (locally) absolutely continuous,
establishes the most general (and natural) framework within which the
Fundamental Theorem of Calculus works.
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Over the years, the subject has continuously received a great deal of
attention. In particular, considerable effort in the literature was devoted to
generalizing this result in various respects; see for instance the monographs
[Wh], [Fe3], [Sa], [BM], [La], [Jul], [Zi], and the references therein.

One of the early recognized directions was to try to allow less regular
integrands by generalizing the Lebesgue integral. For instance, the existence
of derivatives which are not Lebesgue integrable was regarded as a short-
coming of Lebesgue’s integral and not as a pathology of the functions
under discussion. This point of view eventually led to the design of the
Denjoy-Perron integral in the 1910’s (cf. e.g. [Sa], Chapters VI, VII).
For more recent developments along these lines we refer to the work
of Harrison [Ha], Henstock [H], Kurzweil [Ku], Pfeffer [P1, 2, 3, 4],
Mawhin [M1, 2].

Nonetheless, there are other natural ways to extend Lebesgue’s theorem to
higher dimensions and to extend its validity to more general integrands and
domains while still using the usual Lebesgue integral. See, for instance,
Whitney [Wh], Bochner [Bo], Shapiro [Shl, 2, 3] among others. Another very
important and influential work but having somewhat different aims is that
of Federer [Fel, 2, 3].

There are two major aspects of the corresponding problem in the pluri-
dimensional setting.

(i) The local problem (i.e. the validity aspect). Describe the class
of (n — 1)-forms u on a domain Q C R” for which there exists a n-form
f e L'(Q, loc) such that the following local Stokes formula holds:

(0.2) 5 u= jf f, for any rectangle Q C Q.
1) Q

(ii) The global problem (i.e. the invariant aspect). Find some minimal
but also natural hypotheses on u so that the global Stokes formula

(0.3) g u = “ du
30 Q

holds for a broad class of domains on C! manifolds.

The main goal of this work is to identify the essential analytical and
geometrical assumptions needed to deal with (i) and (ii). To treat the local
problem we introduce the concept of absolute continuity for (n — 1)-forms
in R”. Being absolutely continuous turns out to be basically equivalent to the
fact that the local Stokes formula holds true. It is important to point out that
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our definition is quite natural for it is homogeneous in » and reduces to the
Lebesgue one when n = 1. Moreover, several alternative characterizations
of this pluridimensional absolute continuity, much in the spirit of the
one-dimensional results, can also be established.

Turning our attention to the global problem, let us first note that, due
to the particular nature of the concept of rectifiability in the plane, the
2-dimensional case plays a special role in the literature. More concretely,
many theorems initially stated in R” can be further improved if n =2
(see e.g. [P], [Lol, [JN]). However, since we shall try to formulate our main
results with no artificial hypotheses and in as general a context as possible,
we shall not attempt to single out this case in any way. Except for this
particularity, our solution to the global problem is considerably more general
than all the previously known forms of the Stokes theorem which go along
the same coordinates. Moreover, both the validity context and its proof
naturally reflect the scope of the theorem.

In addition to some necessary integrability assumptions, the differential
form u satisfying (0.3) is assumed to be absolutely continuous and the
singular set S = (Q\Q) N supp u is supposed to have (n — 1)-dimensional
Hausdorff measure zero, i.e. pn,_(S) = 0. This should be compared, for
instance, with Whitney’s solution to the global problem in which the
differential form u is assumed to be continuous and bounded outside of a
singular set S satisfying certain geometric and measure theoretic condi-
tions [Wh]. While these conditions do imply that p,_;(S) = 0, the converse
is, in general, false.

The key ingredient of the approach we present here is a localization method
enabling us to pass from local, and even from infinitesimal, to global which
we formalize and present in an axiomatic way. This is a synthesis as well as
a significant extension of several basic procedures utilizing subdivision
techniques. We refer to (the proofs of) Cousin’s principle, Goursat’s lemma,
Pompeiu’s removability theorem, etc.

The layout of the paper is as follows. The class of absolutely continuous
differential forms is introduced and studied in § I and § 2. Among other things,
here we show that for such forms the local Stokes formula is valid for arbitrary
compact Lipschitz domains in place of rectangles. The localization technique
alluded to earlier is devised in §3. Global forms of the Stokes formula are
obtained in §4 for Lipschitz domains in R” and, in invariant form, in §5.

The last two sections are devoted to applications. The main results of §6
give sufficient conditions under which the equalities du = f and du = f on
Q\NA (where A is a certain null set with a special structure) taken in
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the pointwise or in the distribution sense are actually valid on the entire
domain Q. In particular, for f = 0 and ¥ = function, we obtain very general
removability criteria for holomorphic functions of several variables.

Finally, in §7, we record the Clifford algebra version of the results
discussed in the previous sections: absolute continuity and the Leibnitz-
Newton formula for Clifford-valued functions, removability criteria for
monogenic functions, and the Pompeiu integral representation formula.

Before we begin the major part of this work, let us introduce some
notation and definitions commonly used in the sequel. A rectangle in R”
will be any simplex Q of the form Q:= [I,_,[ax,bs], where
ar,br € R, a, < b, for all k. The eccentricity of Q is given by

b,'— a;
p(@Q):= sup

1<i,j<n j~aj

Note that p(Q) > 1 and that Q is a cube precisely for p(Q) = 1. The
lower left-most corner of Q, (a,, ..., a,) € R”, will be called the origin of Q,
whereas the upper right-most corner of Q, (b, ..., b,) € R”, the end-point
of Q. The traces of the hyper-planes {x;x, = a,} and {x;x;, = b} on QO
will be called the faces of Q. The collections of all rectangles contained in a
subset Q of R” will be denoted by Z(Q).

A subdivision of a rectangle Q is a finite collection of rectangles (Q;); .,
having mutually disjoint interiors and such that U;.;Q; = Q. A subdivision
of Q will be called elementary if its elements can be obtained as the Cartesian
product of some fixed subdivisions of the factor intervals of Q.

More generally, the union P = u;.;Q; of finitely many rectangles
(Q)ier with mutually disjoint interiors is called a (compact) paved set,
and (Q;); < is said to be a subdivision of the paved set P.

The FEuclidean space R” is equipped with the usual metric || x||2
=(x,x) =Y, ,xi, if x=(x;,...,x,) e R". For SCR", we set
diam(S) : = sup{||x — y|[;x,y € S} and 8S:=S\S. Also, comp(S)
will stand for the collection of all compact subsets of S. For 0 <r < n,n,
will denote the r-dimensional Hausdorff measure in R”, while A, will stand
for the usual Lebesgue measure in R”. Finally, the (n — 1)-dimensional
and the n-dimensional Lebesgue integrals will be denoted by j and H,
respectively.
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1. INTEGRAL AND ABSOLUTE CONTINUITY AND THE LOCAL PROBLEM

DEFINITION 1.1. A bounded subset Q of R”" s called a Lipschitz
domain if for any a € Q\fz, there exists an open neighborhood U
of a in R", a coordinate system (isometric to the canonical one)
(x",x,) = ((x1, ..., Xn_1), Xn), and a Lipschitz continuous function
¢:R"-1—> R such that

QN U={(x"x);0(x)<xs} " U.

Also, if the new coordinates are actually obtained by permuting the canonical
ones, then Q is called a simple Lipschitz domain.

Note that, the border of the domain Q, bQ : = Q\ng, 1s either the empty
set or a (n — 1)-dimensional Lipschitz submanifold of R” (assumed with the
standard induced orientation).

Let now Q be a Lipschitz domain in R” and ® an open set in R7~1.
A locally bi-Lipschitz mapping ¢:® — Q is called Lipschitz embedding
provided ¢ maps ® homeomorphically onto ¢ (®). Furthermore, if S is a
topological space, 4#: S X @ — Q is called a continuous family of Lipschitz

embeddings if h,:= h(s, -) is a Lipschitz embedding for each fixed s € S,
and if the mappings

(1.1) SBSH%GLW(CO,IOC), i=1,...,n—-1,
ox;

are continuous. Here L* (w,loc) is endowed with the usual (Fréchet) topology
given by uniform convergence on compact subsets of w. Throughout this
paper S will actually always be a locally closed subspace of some R*.

Let L' (Q, loc) stand for the vector space of differential forms with locally
integrable coefficients on Q. We consider this space endowed with the
usual (locally convex) topology.

DEFINITION 1.2. A complex-valued (n — 1)-form u defined on Q
Is called integrally continuous if:

(1) the form wu is locally (n — 1)-integrable, i.e. ©*u is locally
integrable on ® for any Lipschitz embedding ¢: o — Q;

(2) the mapping S>s— hfueL'(w,loc) is continuous, for any
continuous family of Lipschitz embeddings h:S X ® — Q.

EXAMPLES. Let wu= Y/ (=1 ~lu;dx A ---Aa/’}i/\ -+ Adx, be
a (n—1)-form on Q where, as usual, the symbol under the “hat” is
omitted in the product.
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(1) If for 1 < i < n the functions u; | ¢ are p,_-integrable for any com-
pact set C C Q having p,_;(C) < + oo, then u is locally (n — 1)-integrable.
In particular, this is the case if u; are locally bounded.

(2) Suppose that there exists a set 4 C Q of zero (n — 1)-dimensional
Hausdorff measure such that u; | @\4) 1S continuous (in the induced
topology) and u;lcﬂ(Q\A) 1S W,_; integrable for any 1 <i < n and any
compact set C C Q having pn,_;(C) < + o. Then u is integrally continuous
as well.

(3) For n=1, a (n— 1)-form u is a function and, in this case, the
form wu is integrally continuous if and only if the function u is continuous.

Recall the usual exterior derivative operator d. The main result of this
section is the following.

THEOREM 1.3. Consider a Lipschitz domain € in R". Let u be
an integrally continuous (n — 1)-form on € and let f be a locally
integrable n-form on €. The following are equivalent.

(1) For any compact Lipschitz domain K C Q we have SBKU = “Kf.
(2) For any rectangle Q € 7% (Q) we have SBQu = “Qf.
(3) du = f in the distribution sense on Q.

Before we proceed with the proof of this theorem, we shall prove a
lemma. To state it, we need some more notation. Let i be a positive,
smooth, function supported in the closed unit ball in R” and normalized
such that [, xdx = 1. For ¢ > 0, set Q. := {x € R”; dist(x, d3Q) > €} and,
for any @ € L! (EOZ, loc), set

<1>g(X):=H O(x—ey)x(y)dy, xeQ..
R7

It is a well-known fact that ®, € C*(Q,) and that &, > ® in Ll(é, loc)
as € tends to zero. For a locally integrable form u# on Q, u. is defined
componentwise.

LEMMA 1.4. Let Q be a Lipschitz domain in R” and let u be
an integrally continuous (n — 1)-form on Q. Then:

(1) ueL'(Q,loc);

(2) o*u.,— ¢*u in L'(w,loc) as & approaches zero, for any
Lipschitz embedding ¢: w0 — Q.
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Proof. For each sufficiently small ¢ > 0, fixed for the moment, consider
the continuous family of Lipschitz embeddings

h:Qe X 0 3 (xat)H(xl+t19---3xn—1+tn—1>xn) ’

where Q. , defined above, stands for the space of parameters and w. stands
for a suitably small, open neighborhood of the cube [— ¢, €]7~!. Obviously,
(h*u) (1) = ®(x) + 11, ees Xn1 + tno1, Xn)dE A AdE, -, for some
function ®. Since u is integrally continuous, the function

de(x):= 81”5 DXy + 1, ey X1 H a1, Xp)dE A AdE,
[_g’g]n—l
is continuous on Q.. For any small, fixed x,, the Lebesgue differen-
tiation theorem vyields that ®&(-,x,) > ®(,x,), as &—0, almost
everywhere with respect to the (n — 1)-dimensional Lebesgue measure
on {x"eR"";(x",x,) € £°2}. Using Fubini’s theorem we infer that
®e— P, as € > 0, almost everywhere on Q. Thus, ® is A,-measurable.
Next, let Q = Q" X Q, be a rectangle in R”~! X R which is contained
in §°2, and consider the continuous family of Lipschitz embeddings

k:Q, X QO 3 (x,,x)~>(x",x,) e Q.

Hence, kf u = ®(-,x,)dx A" Adx,_1. As u is integrally continuous,
the mapping

0. aanj | ®(x", x,) | dxiA - Adx,_,
o

is continuous. In particular, the iterated integral

§ s | @ (x’, x,) | dx’ Adx,
Qn v Q'

is finite. By Fubini’s theorem, it follows that @ is integrable on Q.

Now, if w= 5" (= 1)i-lu;dx,n- AdRiA--- Adx, the above
reasoning gives that u; = ® is integrable on Q. Likewise, u,, ..., u, are
integrable on Q, and u is thus locally integrable on £°2

To conclude the proof of (1) it suffices to show that any a € o\ O has
a compact neighborhood K in R” such that u is integrable on K n Q. To
see this, there is no loss of generality assuming that K is so that

KnQ={(x"x,);x"€Q",0(x)<x, <o(x) + ¢},
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where Q' is a rectangle in R”~!,¢:R”-!—> R is a Lipschitz function,
and € > 0 is some fixed, sufficiently small number. This time we take the
continuous family of Lipschitz embeddings

h':[0,e1 X Q' 3 (s, x )= (x",0(x") +5) € Q

and proceed as before. Hence, (1) follows.

To see (2), let u = Y™, (= )i-lu;dx,A - AdRiA -+ Adx, in Q, 50
that we have ¢*u = (Y, (u;0 0)®;)dt; A" adt,_;, where ®; are
measurable functions, locally (essentially) bounded on . Similarly,
0*ue = (L, ((u)e © 9)D;)dt A+ AdE,_,.

Given a compact subset C of w, we consider the continuous family of
Lipschitz embeddings (s, ¢) — @(¢f) — s, where ¢ lies in an open neigh-
borhood of C and s lies in a small open ball centered at the origin of R”.
Let also 6 > 0 be an arbitrary, fixed number. By the integral continuity
of u, there exists & > 0 such that

(1.2) j
C

for all ‘y| <1 and 0 < e < &. Since, by (1), the functions u; are locally
integrable on Q, the function

n n

Y ui(e(t) —en)®,(1) — ¥ u;(@(2) @ ()
1

i=1 i=

x(y)dt <9

D) uf(y)Qi(t)x(M:—y) , £€>0,
€

is locally integrable on ® X Q. Integrating (1.2) against dy over the closed
unit ball in R” and then changing the order of integration, we obtain

f '(D*ua - (p*u|dun—1 < cne ’
C

for some ¢, > 0 depending only on n. Since 8 > 0 was arbitrary, the proof
of the lemma is therefore complete. [

Proof of Theorem 1.3. QObviously (1) implies (2). Next, assume that (2)
holds and let Q be an arbitrary rectangle in R” contained in Q. It is then
straightforward to see that, for a sufficiently small ¢ > 0,

ol
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Since u, is smooth, the standard form of Stokes formula gives that
{§,du. = |, f.. As Q was arbitrarily chosen, we see that du. = f, on Q.
ana, hence, By letting £ go to zero, du = f in the distribution sense on €.
Thus, (2) = (3).

Finally, we consider the implication (3) = (1). Using a smooth partition of
unity, it is not difficult to see that matters can be reduced to verifying (1.1)
in the following cases:

(i) the support of u is included in the interior of K;
(i) the domain K has the form

(1.3) {(x"yx,) € [0, 11771 X [0, 1], < 0 (x7)}

for some Lipschitz function ¢:R”-1— (0, 1).

We present the proof in the second case, as the proof the first case goes
along the same lines and is somewhat simpler. Let us first note that, if K,
is as in (1.3) except that ¢ has been replaced by €, with 0 < € < 1, on account
of the integral continuity of u we have

5 uzlimg u.
3K e~ 1 Joak,

Hence, it suffices to prove the statement with K, in place of K or, in other
words, assuming that the compact domain K from (1.2) is actually contained
in Q. Furthermore, since by (1) du, = f, on Q. for all € > 0, and since

IR I | R

as € = 0 (the first convergence utilizes the integral continuity of u), there is
no loss in generality if we assume that u and f are smooth forms in a neigh-
borhood of X.

Consider now the bi-Lipschitz homeomorphism
h:[0, 1173 (x',x,) > (X', x,0(x") € K .
From the change of variable formula ([Fe3], Theorem 3.2.3, p. 243) we have

S u= s h*u .
0K o[0,1]7

Also, a routine calculation shows that

n-—1

(h*U) (xl9xn) = U(x”xn) + ( Z Wi(xlaxn)ai(p(x,)) dxl/\ /\dxn—l ’

i=1
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where the coefficients of the (n — 1)-form v as well as (w;); are Lipschitz
functions. Clearly, the usual Stokes formula on [0, 1]” holds for v whereas,
forl<ig<n-1,

S (wi(x", 1) = wi(x",0))8;0(x")dx’
[o, I]n—l

1 ’

_ » Ow; (X", X») N s

=(-1" ——20;0(x)dx" Adx, .
0 [0,1]""1 8xn

Consequently, the Stokes formula holds for A*u on [0, 1]%, so that

s u=§ h*u:“ d(h*u):” h*(du)
8K 810, 117 [0, 117 [0,1]7
=1l
[0,1]7 K

and the proof is complete. [

DEFINITION 1.5. Let Q be a Lipschitz domain in R". An integrally
continuous (n — 1)-form u on Q is called absolutely continuous on €
if d(ul|g), taken in the distribution sense, is integrable on K for any
compact subset K of Q.

Note that if u = Zle(— Di-Yu;dx;n--- /\@/\ -++Adx, and u; are,
for instance, locally Lipschitz on Q, then u is absolutely continuous on Q.

A simple consequence of Theorem 1.3 and of the above definition is
the next.

THEOREM 1.6. If K is a compact Lipschitz domain in R" and u
is an absolutely continuous (n — 1)-form on K, then

IR

2. CHARACTERIZATIONS OF THE PLURIDIMENSIONAL ABSOLUTE CONTINUITY

Theorem 1.3 suggests the possibility of characterizing pluridimensional
absolute continuity of (n — 1)-forms in a way similar to Lebesgue’s definition
of absolute continuity of functions on the real line (i.e. without involving the
exterior derivative operator). This is made precise in the following theorem.
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THEOREM 2.1. Let Q be an open subset of R" and let u be
a (n — 1)-form which is locally (n — 1)-integrable on Q. The following
are equivalent.

(1) There exists a locally integrable n-form f on Q such that
du = f in the distribution sense on Q.

(2) There exists a locally integrable n-form f on Q such that
faQu = SSQf, for any Q e 7 (Q).

(3) There exists a locally integrable n-form g on Q such that
[fooul < (o8 forany Qe Z(.

(4) Forany Qe #(Q) andany € >0, thereexists &> 0 such that

g y
9Q;

for any subdivision (Q;)ie;r of QO and any JCI for which
Ziejxn(Qi)ga-

)

ield

SE,

In particular, Theorem 1.3 and the above result show that an integrally
continuous (# — 1)-form u on Q is absolutely continuous on Q if it satisfies
one of the above equivalent conditions. However, let us note that, without
the integral continuity condition, u with (1)-(4) above is not necessarily
absolutely continuous, except for n = 1.

Here is a simple counterexample in R2. If y is the characteristic function
of {(1 —1¢1);0<t< 1} CR? then u:= ydx, is locally l-integrable and
satisfies (1) — (4) in the above theorem, without being absolutely continuous
on Q:= R2.

Proof of Theorem 2.1. Clearly, all we need to show is that (4)
implies (1). For each rectangle QO contained in Q we set

g )
9Q;

Note that | jaQu| < p(Q) < + o for any rectangle Q. Also, since Q — Sao”
is rectangle-additive, i.e. SaQu = Y. 1580,-” for any rectangle Q and a;ly
subdivision (Q;);<; of Q, so is p. Theréfore, it makes sense to extend p
by setting

(2.2) p(P):= ) p(Q)),

iel

iel

@.1) p(Q):=sup{ y

; (Oi)ier an elementary subdivision of Q}.
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for any paved set P contained in Q and any subdivision (Q;);; of P.
The rectangle-additivity of p ensures that this extension is consistent
with (2.1) and that (2.2) is independent of the particular choice of the
subdivision (Q;); s of P. Going further, we extend p to comp (Q) by setting

p(K):= inf{p(P); P paved set, K C P}, K € comp(Q) .
By (4), this extension is continuous in the sense that p(K,)— p(K)
whenever (K,), is a nested sequence of compact sets in Q such that
K, = K.

Now, for each multi-index o € N” and for each k€ N we con-
sider the cube Qy ,:=1[0,2-%]" + 2-%a, and the set of multi-indices
Ip:={0 e N"; O, , C Q}. Moreover, for any complex-valued, continuous
and compactly supported function y on Q, we set

Ii(y):={a € ly;suppy N Qpa # T}

and

Pk(W):: ) Qk,a-

a € L (v)

It follows that P, ., (y) C P, (y) for any kK € N and that n, P, (y) = suppv.
Next, we define

si(w):= ) \1!(2"(1)§ u.
an,a

a € Ik (v)

Clearly, s, is a C-linear functional on C,(Q) which satisfies

|seu) | < p(Pew) sup | v, veCo(Q).

Finally, we introduce p: Cy(Q2) = C by setting

p(y) = lim s, (y), ve (),
k

where the existence of the limit easily follows from the uniform continuity
of w. As p is C-linear and satisfies | p(y) | < p(supp ) || v || .=, we infer
that p is a complex-valued Radon measure on Q.

Fix Q € #(Q) and take v, € C(,(Q2) a sequence of real-valued functions
such that 0<vy,<1 on Q, y,=1 on a neighborhood of O,
suppW, .1 C suppvy, and n,suppvy, = Q. From the definition of p it is not
difficult to see that

’ n(y,) — s u| < p(suppv,) — p(Q) .
8Q
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Hence, on account of the continuity of p, we see that j Qa’u = faQu, for
any Q. With this at hand and by once again using the hypothesis (4), we
conclude that p is absolutely continuous with respect to the n-dimensional
Lebesgue measure A,. Therefore, if f e L!'(Q,loc) denotes the Radon-
Nikodym-Lebesgue density of p with respect to A,, we have that

el

for any Q € #(Q). Using this, Theorem 1.3 finally implies that du = f in the
distribution sense on Q, and this concludes the proof of the theorem. [

REMARK 2.2. Inspection of the proof also shows that p(K)
= || f]d\, for any compact subset K of Q, and that | f|< g a.e.
on Q.

An integrally Lipschitz (n — 1)-form in Q is a locally (n — 1)-integrable
form u for which there exists M > 0 so that

ju
0Q

for each Q € Z(Q2). Note that any integrally Lipschitz (n — 1)-form u in Q
satisfies the equivalent conditions in Theorem 1.3.

< MX,(Q)

3. A MAXIMUM PRINCIPLE

The purpose of this section is to prove a localization theorem which plays
a significant role in the sequel. Here, our approach is of an abstract nature.

Let <2 be a fixed metric space. In general, for an arbitrary set E, we
shall denote by .7 (E) the collection of all finite families of subsets of E,
and by Z(E) the collection of all subsets of .¥ (E).

DEFINITION 3.1. A rectangular system on <& is a subset P of
comp(et’) together with an application div: # — & (#) satisfying the
following:

(1) If Qe Z# and (Qi)ic;€ div(Q), then Q. C Q forany iel;

(2) Forany Qe % andany € >0, there exists (Qi)icr € div(Q)
so that diam(Q;) <& for every iel.



230 M. JURCHESCU AND M. MITREA

The elements of % will be called rectangles, whereas the elements of
div(Q), for Q € Z, will be called the subdivisions of Q. Later, we shall also
need the following.

DEFINITION 3.2. A rectangular system (Z,div) is said to be full if
for any Qe % and any R,,...R,e€ % with R,CQ,1<v<m,
there exists a subdivision (Q;);ic; of Q and, for each v, a subset I,
of I such that (Q;);c;, Is a subdivision of R,.

Let (#, div) be a rectangular system on . A complex valued function ¢
defined on # is said to be additive if ¢(Q)= Y._,0(Q;) for any
subdivision (Q;);;of Q. Similarly, a real-valued function s defined on % is
called subadditive if s(Q) < Y ,.,s(Q;) for any subdivision (Q;);<,; of Q.
The function s is called superadditive if — s is subadditive.

DEFINITION 3.3. Let ¢ be additive and s superadditive on 7.
A subset A C & is said to be (¢, s)-negligible if, for any Q € % and
any € >0, there exist a subdivision (Q;)ic; of QO and a subset J
of I sothat Q;n A= forany ie€lI\J, and such that

Y 0(Q) | < Y s(Q)+e.

ield ield

We are now in a position to state in precise terms the localization principle
alluded to in the introduction.

THEOREM 3.4. Let (Z%,div) be a rectangular system on the complete
metric space <. Also, let ¢ be an additive function on Z,s a super-
additive function on %, and let A C & be a countable union of
(¢, s)-negligible subsets of <£. The following conditions are equivalent:

(1) [0@)|<s(Q) forall Qe %;

(2) there exists a positive, superadditive function t on % so that
|0 (Q) | < 5(Q) whenever t(Q) =0 and such that, for any nested sequence
of rectangles (Q,), having t(Q,) >0 for all v, and n,Q,={a}
for some ae€ cZ\A, we have

0@V -5@) _

H

liminf

v t(Qv)
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(3) there exists a positive, superadditive function t on X and,
for any ae€ Z\A and any € >0, an open neighborhood v of a
in < such that

[0(Q) [ <5(Q) +e2(Q)

for any rectangle Q included in -« and containing a.
Furthermore, the above conditions still remain equivalent with |@(-) |
replaced by .

Note the analogy of this result with the maximum principle from
potential theory (the additive and subadditive functions correspond to the
harmonic and subharmonic functions, respectively, whereas y appears as a
kind of ideal boundary of %#).

Let us also point out that for ¢ = constant, Theorem 3.4 is essentially
a principle for passing from /local to global, while for ¢ # constant a principle
for passing from infinitesimal to global.

Proof of Theorem 3.4. Obviously, (1) implies (2). Moreover, a straight-
forward reasoning by contradiction shows that any function 7 satisfying
the hypothesis (2) will automatically do for (3).

We are therefore left with (3) = (1). Once again, we shall reason
by contradiction. To this effect, assume that there exists a rectangle Q

such that | @ (Q)| > s(Q). In particular, this implies that #(Q) > 0. Now
fix € > 0, small enough so that

[0 (@) ] = s(Q) > &1(Q) ,

andsete,:= 2 '+3-"1"V)e. Let A = UJ_,A,, where A4, is a (¢, 5)-negli-
gible subset of <& for each v € N. In particular, since 4, is (¢, s)-negligible,

there exist a subdivision (Q;);c; of O and a subset J of I for which
Q,nAy= &5, when i € I\ J, and such that

3.1)

L 0@ | < X s@)+][0@)]-5(Q)-er(Q).
ielJ ield

Next we claim that we cannot have |0 (Q;) | < s(Q)) + £,£(Q;) for all
i € I\J. To prove the claim, we remark that since 7 is positive and super-
additive, this would lead to

Y le@)< Y s(Q)+e0 Y Q)

ielINJ 1elINJ ielI\NJ

< Y s(Q) +&0t(Q) .

ielI\J

(3.2)
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In turn, since ¢ is additive and s superadditive, a simple combination
of (3.1) and (3.2) would imply that 0 < g¢7(Q) — ££(Q), which is a contra-
diction. Consequently, one can find an index i, € I\ J for which

I(D(Qio) | > s(Qi,) t+ €08(Q;,) -

Because Q;, and A, are disjoint it follows that it is possible to find a
rectangle Ry C Q which does not intersect A,, has diam(R,) < 1, and
such that

| @ (Ro) | > s(Ro) + £0t(Ry) -

Continuing this inductively, one can construct a sequence of nested
rectangles {R,}, such that R, does not meet A4,, diam(R,) <2-V, and

10(R)) | > SR + evt(R,) = s(Ry) + gz(m ,

for any ve N. But then n,R, = {a} for some ae £\ A and this
contradicts (3). The proof is finished. [

We shall also use the following version of the Theorem 3.4.

THEOREM 3.5. Let &%, (#,div),A,¢,s be as in Theorem 3.4 and
assume that t is a positive, superadditive function on 7. Then, the
following conditions are equivalent:

(1) for any relatively compact open subset Q of <& there exists
M > 0 such that |9(Q)| < s(Q) + Mt(Q) forall Qe Z#Z with Q C Q;

2) |0(Q)]| <s(Q) whenever t(Q) =0 and for any nested sequence
of rectangles {Q.,}, having t(Q,)>0 for all v, and n,Q, = {a}
for some ae€ Z\A, we have

limsup ] ® (Qvt)(lQ_)S(Qv) < L oo

b

(3) for any a e &\A there exist an open neighborhood < of a
in & and M >0 such that

| 0(Q) | < s(Q) + Mt(Q),

for any rectangle Q included in % and containing a.

The proof is quite similar to that of Theorem 3.4 and we omit it.
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4. THE GLOBAL STOKES FORMULA FOR SIMPLE LIPSCHITZ DOMAINS IN R”

A (n — 1)-form u on R7 is said to be uniformly locally (n — 1)-integrable
on Q C R7if it is locally (n — 1)-integrable and, for any compact subset K
of R” and any € > 0, there exists a positive 8 = & (K, €) such that

(4.1) \ S U
C

whenever C is a (n — 1)-dimensional Lipschitz submanifold C of R” which
is contained in K N Q and has p,_;(C) < 4.

Examples include (n — 1)-forms with locally bounded coefficients, or
exhibiting isolated singularities of the type || x|| ¢, 0 < n — 1.

Let us recall the notion of simple Lipschitz domain introduced in the last
part of Definition 1.1. The main result of this section is the following.

<&

THEOREM 4.1. Let Q be a simple Lipschitz domain in R”", and
let u be a compactly supported (n — 1)-form in R”" which is uniformly
(n — 1)-locally integrable on R". Assume that u is absolutely continuous
on Q and that the singular set

F(u):= (Q\Q) N supp u

has (n — 1)-dimensional Hausdorff measure zero.
Then, if u is integrable on bQ and du (in the distribution sense)
Is integrable on Q, we have

RS

To prove this theorem, we shall need an auxiliary lemma. Two
Lipschitz domains Q,;,Q, in R” will be called almost transversal if
L, (DQ N bQ,) =0. Let Q be a Lipschitz domain in R” and let % stand
for the collection of all rectangles of R” which are almost transversal to Q.
Next, assume that u is a (n — 1)-form compactly supported on R”, uniformly
locally (n — 1)-integrable on R”, and integrable on bQ. Also, let f be a

locally integrable n-form on R” and consider the complex-valued mapping ¢
defined on % by

(P(Q)1=§ U+j u_jj 7.
0nbO 3 nao 0nQ
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LEMMA 4.2. Let Q, %,u,f,¢ be as above and assume that
F(u):= (Q\Q) nsuppu has Hausdorff (n— 1)-dimensional measure
zero. Then the following hold.

(1) % together with the usual subdivisions is a full rectangular system
on R~”.

(2) If P isa %-paved setand (Q;);c; is a subdivision of P, then

Z(p(Q,-)=§ u+§ u—” f.
iel B Abo S nop PNQ

In particular, ¢ is additive.
(3) The set ¥ (u) is (¢, 0)-negligible.

Proof. For each k=1,2,...,n, let A, be the collection of all c e R
having the property that

Lo ({x= (1,00, x,) €0Q5x,=¢}) >0

Since A, (bQ) = 0, it follows by Fubini’s theorem that A, has Lebesgue
measure zero in R for any k.

Consider now Q,R;,...,R, € % such that R, c Q for all v. Let
(ay,...,a,) be the origin of Q, and (b,,...,b,) the end-point of Q.
Similarly, for each v, (aj, ..., a,) will stand for the origin of R,, whereas
(b}, ...,b,) will denote the end-point of R,. The almost transversality
hypothesis implies that ay, by, a;, b, € R\ A, for all v, k.

Now, since A;(A;) = 0, for any a priory given € > 0, we can select a
finite sequence of real numbers xz,ak e R\A,,a, =0, ..., pr, such that

\% \%
A = Xp o< " <Xy, = by,
v —_yV —-1/2
lxk,ak_l xk,CLkl < En b

and, finally, so that a; and b) are among the numbers {x; , },, . It is

then easy to see that, for € sufficiently small, the rectangles

PR

n
Q.o = I1 Xk, 0,y Xk 0, ], With 1 < oy < pie
k=1

form an elementary subdivision of Q which contains a subdivision of R,
for each 1 < v < m. This completes the proof of (1).

Going further, (2) is immediate in the case in which the family (Q;);ic;
comes from an elementary subdivision of a larger rectangle containing P.
Thus, the general case then easily follows from this and (1).
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Next we turn our attention to (3). Fix Q € #, K a compact subset of
Q\ &(u) and € > 0. Since &(u) has (n — 1)-dimensional Hausdorff measure
zero, it is thus possible to select finitely many rectangles Ry, ..., R, € 4
which do not intersect K, their interiors cover Q n & (u), and such that

m

E un—l(aRv) <eg.

v=1
Then P:= u,(Q N R,) is a Z-paved set contained in Q which does
not intersect K and has the property that p,_,(8P) <e. Since # is
full, we can find an elementary subdivision (Q;);.; of Q and a subset J
of I for which P = U;.;0Q;. In particular, we note that this implies
Q:n F(u) = @ for i e I\J. Using (2), we can write

E@(Qf)=§ u+$ u——“f.
ied Igr\bQ émaP P

Now, since u is integrable on bQ and f is integrable on Q, the first and the
third terms from above can be made arbitrarily small by choosing K large
enough. Furthermore, by taking & sufficiently small and using the fact
that u is uniformly locally (n — 1)-integrable, the second term can also be
made arbitrarily small. The proof of the lemma is therefore finished. [

Proof of Theorem 4.1. Since in the conclusion of the theorem u intervenes
only through its values on Q, there is no loss of generality assuming
that u = 0 on R”\Q, i.e. that suppu C Q (note that thls does not alter
the hypotheses either). We set f:= du in Q Zero in R”\Q and adopt the
notation introduced in Lemma 4.2. Clearly, it is enough to prove that
©(Q) =0 for any Q € #. First, let us observe that from (the proof of)
Theorem 1.3 this is immediate for rectangles of the following two types:

(D QCf)oru=OonQ;

(2) after suitably permuting the coordinates in R”,
ONQ={x=&"x,);x"€e Q" and a,<x,<0(x')<b,},

where Q = Q’ X [a,, b,] and 6:R"-! = (a,, b,) is a Lipschitz function.
On the other hand, the compact set &(u) has zero p,._;-measure and,
hence, by Lemma 4.2, is (9, 0)-negligible. Consequently, using Theorem 3.4
with s = ¢ = 0, it suffices to show that any point @ € bQ has an open neigh-
borhood % in R” such that @ (R) = 0 for all rectangles R € & included
in % and containing a. By possibly relabeling the coordinates first, we can
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find an open rectangle U in R” and a Lipschitz function 6: R”-!— R
such that

UnNnQ=Un{x=((x",x,);x,<0(x")}.

Now let R =R’ X [a,,b,] € # be a fixed rectangle contained in U,
where R’ is a rectangle in R”-! and a,, b, € R, a, < b,. Denote by %’ the
collection of all rectangles Q' from R”~! which are contained in R’, having
pQOQ)Y<pR)+1 and such that Q' X [a,,b,] € Z. Then, with the
usual subdivisions, (%, div) becomes a rectangular system on R’.

Next, we introduce the mapping y: #’ — C by setting

V(@) :=0(Q" X [a,, b,]), Q'€ Z’

Thus, everything comes down to proving that y vanishes identically on % °.
Let us consider the following compact set in R”:

A':=R'" n (0671 (a,) ub-1(b,)) .

If a rectangle Q' e #’ does not meet A’, then the rectangle
Q' X la,,b,] € % is either of type (1) or (2) from above, so that,
at any rate, y(Q') = 0.

Since ¢ is additive, so is y and, by the equivalence (1) ¢ (3) in
Theorem 3.4 with s = ¢ = 0, it suffices to prove that A’ is (y, 0)-negligible.
To this end, let Q' e #’ and let (Q]);c; be a subdivision of Q’ such
that §,:= diam(Q;) < 6, for all i, for some positive 6. We also introduce

J:={ie;Qn(® (a,)ub-1(b)) = T} .

For each i€ J we have that at least one of the sets Q/n 08-!(a,),
Q!N 8-1(b,) is empty provided & is sufficiently small. Assuming that this is
the case, we set

Qi:=Q; X la,,a, + 6;M]
if @/ n 0-1(a,) # &, and
Qi:: Qllx [bﬂ - 6iM9 bn] )

if Q/n6-1(b,) # . Here M stands for the (essential) supremum
of | V8 |on R’. Then P := uU;.,0;is a #-paved set having

(4.2) ba-1(®P) < C Y a1 (Q))

ielJ

for some positive constant C depending exclusively on 6 and R’. Furthermore,
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as ¢ (Q) = 0 for any Q of the types (1)-(2) described above, and since ¢ is
additive, it follows that y(Q?) = ¢(Q;) for any i € J. In particular,

QnaP PAbQ PNQ

By (4.2), the uniformly local (n — 1)-integrability of u, the integrability
of u on »Q and the integrability of f on Q, the right hand side of the above
equality can be made arbitrarily small, provided Y. 1,-1(Q)) 1is
sufficiently small. However, since A" has Lebesgue measure zero in R7-1,
this can be readily taken care of and this completes the proof of the
theorem. [

Y w@) | =lo@|< + +

ield

REMARK 4.3. As an inspection of the proofs shows, Theorem 4.1
and Lemma 4.2 continue to hold in the case when the locally (n — 1)-integrable

form wu is wuniformly (n — 1)-integrable only in a small neighborhood
of & (u).

5. THE GLOBAL FORM OF THE STOKES FORMULA ON C! MANIFOLDS

In this section we shall present a coordinate free version of the main result
of section 4. Throughout this section, we let M be a fixed, oriented, Hausdorff,
differentiable manifold of class C!, and real dimension 7.

DEFINITION 5.1. A subset Q of M is called a C' domain if for
any a € Q\Q, there exist an open neighborhood U of a in M and

a C' diffeomorphism f = (fi,f2,..»fn) of U onto an open
neighborhood V of the origin in R?", such that

UnNnQ={xeU;f,(x)<0}.

Clearly, the border of the domain Q,bQ := o\ O is either the empty
set or a (n— l)-dimensional C!-submanifold of M assumed with the
standard induced orientation. Note that a simple application of the implicit
function theorem shows that any C! domain is also a Lipschitz domain
in R”.

It is not difficult to see that the class of Lipschitz domains described
in Definition 1.1 is not invariant under the action of bi-Lipschitz diffeo-
morphisms of R”. In particular, Theorem 4.1 cannot be reformulated
invariantly. To remedy this, for the rest of this section we shall slightly adjust
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our previous definitions to the C! framework by carrying out the following
simple modification. That is, whenever applicable, we shall replace “Lipschitz
embedding’ by “C'-embedding”, i.e. Lipschitz embeddings which are C'!
functions. Note that, in particular, the condition (1.1) is in this case equivalent
with the continuity of the functions

oh(s, x)

Sxw—-Q, i=1,2,...n—1.
ax,-

Assuming this modification, all the previously introduced notions become
invariant to C! diffeomorphisms and, hence, meaningful on C! manifolds.
More specifically, we make the following.

DEFINITION 5.2. Let Q bea C! domainof M. A (n-—1)-form u
is said to be absolutely continuous (uniformly (n — 1)-locally integrable)
on Q if for any point P e Q there exists a local coordinate map
h:U—-R" of M with PeU such that (h-Y)*u is absolutely
continuous (uniformly (n — 1)-locally integrable, respectively) on h(U n Q).

Let u and f be locally integrable forms on M, having degrees (n — 1)
and n, respectively. Recall that du = f on a open set Q of M in the distribution
sense, if for any ¢ € C}(Q),

s d(p/\uz—j of .
M M

THEOREM 5.3. Let Q be a C!' domain of M, and u a
(n — 1)-form compactly supported in M. Assume that u is uniformly
(n — 1)-locally integrable and absolutely continuous on Q, and that the
singular set

F(u) = (Q\Q) N sup u

has (n — 1)-dimensional Hausdorff measure zero.
If u isintegrable on bQ and du (taken in the sense of distribution
theory) is integrable on €, then

IS

Proof. Using a smooth partition of unity and then working in local
coordinates we can assume that M = R”. In this case, the conclusion is
provided by Theorem 4.1. [
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Note that, here again it suffices to have the “uniform” part of the local
(n — 1)-integrability condition for u fulfilled only on a small neighborhood
of & (u) (cf. also Remark 4.3).

DEFINITION 5.4. A closed subset A of M s said to have an almost
regular boundary if A coincides with the closure of its interior and if there
exist a family (S;)ic; of C' submanifolds of M and a locally finite
family (C));c: of compact subsets of M such that:

(1) C;CS;, for any iel, and Co‘im Coijz o5, for all 1+#]
(the interiors are taken in S, and in S;, respectively);

(2) CinC; has (n— 1)-dimensional Hausdorff measure zero for
all i+ j;

(3) 0A = vU,;;C;.

Note that if A has an almost regular boundary, then

Q:= AO U ( U é i)
iel
(the interior of A is taken in M) is a C! domain with border bQ = U, ICO’i.
If u is an integrally continuous (n — 1)-form on M, it follows that u is
integrable on each oriented submanifold Co,- (with the standard orientation
induced by /i). Since 0C; has zero measure in S;, we can define

j u:= Zj u
9A iel 81’

whenever A n supp # is compact. Hence, without further proof, we can
state the following.

THEOREM 5.5. Let A be a subset of M with an almost regular
boundary. If wu is a (n— 1)-form which is uniformly (n — 1)-locally
integrable on M, absolutely continuous on M, and for which A N supp u
is compact, then u is integrable on 8A,du is integrable on /(1’ and

ERIRE
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6. TESTS FOR THE EQUALITIES du = f AND du = f IN THE WEAK SENSE

Let Q € R” be a fixed open set in R”. In this section we let % (Q) denote
the collection of all rectangles Q contained in Q and having p(Q) < ¢y, for
a fixed real number 1 < ¢j < + .

First, we shall give a coordinate free definition of the exterior differen-
tiation operation. This builds on the classical work of Pompeiu [Po2] for
the case n = 2 (cf. also the results in §7).

DEFINITION 6.1. A (n — 1)-form wu which is locally (n — 1)-integrable
on Q is said to be exteriorly differentiable at a € Q if the limit

1
c:= lim s U
ola Ap(Q) 90

exists in C. More specifically, we assume that there exists a complex
number c¢ so that, for any € > 0, there exists an open neighborhood
Uc Q of asuch that

< el (Q),

l j u— ch,(Q)
80

for all Qe #(Q), Q C U.
We then set u’(a):=c¢ and du,:=cm,A-+*AT,, Where m{,...,T,
are the canonical coordinate projections of R”.

For n = 1, u’ becomes the usual derivative of the function u. Our next
theorem collects several exterior differentiability criteria for (n — 1)-forms.

n . Pt
THEOREM 6.2. Let u= Y. (=D~ tuidx,n--ndx;n-- ndx,
be a locally (n — 1)-integrable form on Q.

(1) If the function u;,i=1,...,n are differentiable at a € Q,
then u s exteriorly differentiable at a and

ou

w'(@= L —(@.

i=1

(2) If u satisfies one of the equivalent conditions in Theorem 1.3,

then u is exteriorly differentiable at almost every point of Q and

u' e L'(Q,loc). In particular, this is the case if u is absolutely con-
tinuous or integrally Lipschitz on Q.
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Proof. By hypotheses, there exist some numbers c;; € R and some
functions &; which are continuous and vanish at a, such that

ui(x) = ui(a) + Y c(xj—a) + Ex)||x—all, i=12..,n.
j=1
A straightforward computation then yields u'(a) = Zlec;,-.
The second part of the conclusion follows directly from Theorem 1.3

and Lebesgue’s differentiation theorem. L]

Now we consider a p-form u = El’”:pu,dxf on Q,0<p<n—-1
Here Y’ indicates that the sum is performed over the set of all strictly
increasing multi-indices I of length p, i.e. all ordered p-tuples of the
form I= (iy,...,ip), with 1<i; < -+ <i,<n Also, dx! stands for
dxi A /\dxip if I = (iy,...,i,). For each strictly increasing multi-index J
of length p + 1 we introduce the (n — 1)-form

ul:= Y (—l)f—l( Y’ syuj) a’xl/\“-/\ﬁ}i/\---/\dxn.

i=1 [I|=p
Here ¢/ =0 unless {i}ul=J, in which case s}l is the sign of the
permutation taking i/, the concatenation of {i} and 7, onto J.
The forms u”’ will be called the (n — 1)-forms associated to u. Since,
clearly, the application

ur{u’;|J|=p+ 1}

is one-to-one, we can represent a given differential form either by its
coefficients, or by the (n — 1)-forms associated to it. In fact, for p = n — 1,
the functions u”/, |J| = n, are precisely the coefficients of the form u.
Furthermore, one can easily check that u is locally integrable if and only
each of its associated (n — 1)-forms is locally integrable.

It is natural to use the associated (n — 1)-forms to extend the concepts
already defined for p = n — 1 to the general case of p-forms, p < n — 1.
More specifically, a p-form is called locally (n — 1)-integrable, exteriorly
differentiable at a, etc, if all its associated (n — 1)-forms have that particular

property. In the case when u/’s are exteriorly differentiable at a € Q,
we also set

du,:= Y (W) (a)n’,

|Jl=p+1

J .o — 1 — 1 ;
where n/:= m; A AT T = (1, e Jpa).
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Suppose now that u = E?zl(—l)f‘lu,-dxl/\-~-Aﬁ},-/\---/\dxn is a
(n—1)-form on Q. For 0 <r<1,xe Q, and 0 < ¢ < dist(x, 9Q), we set

u(y) — u(2) ||

y#2z€Bg(x) Hy_ZHr

W,(u,e):=

where B, (x) C R” is the ball of radius € centered at x and u(x) is identified
with the point (u; (x), ..., u, (x)) of R”, etc.

For a (n — 1)-form u on Q and a subset C C Q, we consider the following
conditions:

Condition (o). Ww,_1(C) =0, u is locally (n — 1)-integrable on Q and
uniformly locally (n — 1)-integrable on a neighborhood of C.

Condition (). There exists some 0 < r < 1 such that p,,,_;(C) =0,
u is uniformly locally (n — 1)-integrable on Q and has the property that

(6.1) w,(u,e) =0(), ase—0,

at each point x of Q outside some closed, n,_;-negligible set A C Q.

Condition (y). There exists some 0<r<1 such that p,,,-,(C)
< + oo, u 1s uniformly locally (n — 1)-integrable on € and has the
property that

(6.2) w,(u,e) =o0(l), ase—>0,

at each point x of Q outside some closed, pn,_,-negligible set A C Q.

The main results of this section are the following.

THEOREM 6.3. Consider a complex-valued, locally (n — 1)-integrable
p-form u on Q. Let (C,), be an at most countable collection
of closed subsets of € such that, for each v and each associated
(n—1)-form u’ of wu, the pair (u’,C,) satisfies one of the conditions
(a)-(y) stated above. Furthermore, assume that for any multiindex J

olx }"n(Q)

.
8Q
at any x € Q\(u,C,).

Then, for each J, the restriction of u’ to any relatively compact open
subdomain of Q is integrally Lipschitz. In particular, u is exteriorly
differentiable almost everywhere on £J.

1
(6.3) limsup

< + @

THEOREM 6.4. Let u be a complex-valued locally integrable p-form
which is locally (n — 1)-integrable on € and let (C,), be a as in
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Theorem 6.3. Also, set A:= u,C, and consider a complex-valued
(p+ D)-form f in L'(Q,loc). Furthermore, assume that at least one of
the following conditions is fulfilled:

(1) A isclosed, u isintegrally continuous on Q\A and du = f in
the distribution sense on Q\A;

(2) u is exteriorly differentiable on Q\A and du,= f, at each
point x € Q\A.

Then du = f in the distribution sense on €.

REMARK 6.5. For integrally continuous forms u# such that the limit
in (6.3) vanishes for each J, Theorem 6.3 gives sufficient conditions for the
equality du = 0 to hold in the distribution sense on Q.

Moreover, in the case f = 0, Theorem 6.4 furnishes tests for a p-form
to be closed, too. Theorem 6.3 also gives absolute continuity criteria for
integrally continuous forms. In turn, these can be used to further improve
the main results of §4 and §5.

The proofs of these theorems will be accomplished in a series of lemmas.

LEMMA 6.6. Let u be a locally (n— 1)-integrable (n — 1)-form
on Q, f a locally integrable n-form on €, and let

(6.4) (P(Q)I=j u—” S
80 0

Jor Qe %#(Q). Also, let C be a closed subset of Q. If the pair

(u, C) fulfills one of the conditions (0)-(y) stated above, then the set C
is (¢, 0)-negligible.

Proof. If (a) is the fulfilled condition, then the statement follows from
an obvious variant of Lemma 4.2, (3). To complete the proof in the remaining
cases, let us consider 0 < r < 1 such that C has finite (# + r — 1)-dimensional
Hausdorff measure. Also, let A C Q with pn,_;(4) = 0 be the exceptional
set appearing in the statement of the conditions (B) and (y). Finally, we
fix a rectangle Q € Z(Q) and two small numbers ¢, § > 0.

Con51der now two paved sets P,R C Q such that Q ACCP and
Q NAC R Without any loss of generality we can assume that 0 < &
< dist(A4, OP) and that p,_;(8R) < 8. We can also assume that there exist
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finitely many cubes Ry, ..., R,, with diameters inferior to € so that (R,)}_,
1s a subdivision of P\ R and such that

Y diam(R,)" "' < tasr 1 (C) + 5 .
v=1
Next, let (Q;);e; be a subdivision of Q such that (Q;)ics, = (Rv)J_,

for some I; C I and that, for some I, C 1, (Q;)iers, 1S a subdivision of R.
We set J:=1, U I,. As a consequence, O, " A = & for each i ¢ J. Also,

Z@(Qi):Z:s u+“v u—“ f.
iel v=1 3R, 3R PUR

Going further, for v = 1, ..., m we fix some points x, € R, and set

u(x,):= Z (— l)i—lui(xv)dxl/\---/\@,-/\ e dx, .

5 u
E‘“V

where the sum runs over the faces of R,. For instance, if ¢ is a face of R,
on which x; = constant, then

Then

_ <Y

o}

§ (u - U(XV))
3R,

s (u - u(xv)) ‘ >

< sup | up(x) — ui(x,) | pao1(o) .

X€EOC

I s (Ul - Ul(xv))dle\"'/\dxn

All in all, we get that

j ;
dR,

for some positive constant ¢, depending solely on n. Adding up in v we

] .
j‘ u
aRv

Now, given 6 > 0, there exist €q,d¢ > 0 such that for any 0< ¢ < g,
0<8<8 we have ||f, . f|<8/3. Also, if 8, is sufficiently small,
from the uniform Ilocally (# — 1)-integrability of u we infer that
| §ou|<07/3.

< Cn 0y, (1, 8) diam(R,)" 71,

m

(6.5) )

v=1

< C(Mner-1(C) +8) max o (u,¢).

I1€vsm
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At this point, we fix €¢, 8¢ and, by (6.1) (or 6.2), respectively), conclude
that o, (4,€) = O(1) (or o(l), respectively) as €= 0, uniformly in v.
Using this, (6.4) and the assumptions concerning the size of p,.,-:(C),
we get | 5z 1| < 8/3, provided ¢ is small enough.

Summarizing, for ¢ and & as above, we see that | ¥._,0(Q;)| <6,
and the conclusion follows. [

LEMMA 6.7. Let u be a (n— 1)-form which is locally (n — 1)-inte-
grable on Q and has real-valued coefficients, and let (C,), be an at
most countable collection of closed subsets of € such that each pair
(u, C,) satisfies one of the conditions (a)— (y). Set A:= u,C, and
let f be a locally integrable n-form on Q, also having real-valued
coefficients.

If u s exteriorly differentiable on Q\A and u’'(x)< f(x) for
all x e Q\A, then

(6.6) s U< “ f
80 0

for any Q e Z#(Q).

Proof. Let us first assume that f is lower semi-continuous on Q. We
shall verify the condition (2) in Theorem 3.4 for the additive functions ¢
introduced in (6.3), and 7:= A,. To this effect, let us fix a € Q\ A and
consider a nested sequence of rectangles (Q,), such that n,Q, = {a}.
Since u is exteriorly differentiable at ¢ and since f is lower semi-continuous
it follows that

1 1
liminf U=u'(a) < f(a) < limsup f.
v A (Q) LQV v Q) HQ

Consequently,

liminf 2 (&)
v AR(QV)

<0

and the conclusion is provided in this case by the equivalence (1) & (2)
in Theorem 3.4.

Finally, as

” f =inf { “ g; & lower semi-continuous and > f } ,
o 0

the general case obviously reduces to the one just considered. []
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LEMMA 6.8. Suppose that wu,f, A, are as in the first part of
Lemma 6.6. In addition, assume that at least one of the following two
conditions holds:

(I) A is closed and [, u={[,f for any Qe #(Q) such that
OnNnA=yg;

(2) u is exteriorly differentiable on Q\A and du,= f, for all

Then
Proof. In the first case the assertion follows directly from Lemma 6.6

and Theorem 3.4. As for the second one, the conclusion is immediately seen
from Lemma 6.6. [

Jor any Q € Z#(Q).

LEMMA 6.9. Consider f = Y/, _,,,fsdx’ a locally integrable
(p+ D)-form on Q, and let u be a locally integrable p-form on Q.
Then du = f in the distribution sense if and only if du’ = f;dx,
A+ Adx, in the distribution sense for any J,|J|=p + 1.

Proof. For any smooth form v and for any |J| = p + 1, a routine
calculation shows that

dv’/ = (dv)jdx; A+ Adx, .

The general case then follows from this observation and a standard
regularization technique. [

Now we are ready to present the proofs of the main results of this
-section.

Proof of Theorem 6.3. The conclusions of the theorem are readily seen
from Lemma 6.6, Theorem 3.5 and Theorem 6.2. [

Proof of Theorem 6.4. Using Lemma 6.8 one can reduce matters
to p =n — 1, in which case the theorem follows from Lemma 6.7 and
Theorem 1.3. [
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In the last part of this section we shall present similar results for the usual
8 operator acting on differential forms. Let Q C C” be an open set, and let
E, E, u[,KdZI/\dEK

[I|=p |K|=

bea(p,g)-formon Q,0<p<n0<g< < n — 1. For any multi-indices 7, J
with |[I|=p and |J| =g + 1, we set

" N _
ulbdi=(=1Dr+r Y, (= 1)/°! (E efu; ) dz{L2mAdZ (A AdZ N dZ .
j=1

The forms u %7 are called the (n, n — 1)-forms associated to u. The concepts
of integral continuity, etc, are introduced for (p, g)-forms as in the real
case. We have the following.

THEOREM 6.10. Let u be a locally integrable, complex-valued form
of type (p,q), which is also locally (n — 1)-integrable on an open
subset Q of C". Let (C,), be a sequence of closed subsets of €
such that each pair (u%7,C,) satisfies one of the conditions (a)-(Y).
Also, let A= u,C, and let f be a locally integrable form of type
(p,g+1) on Q.

Assume that at least one of the following conditions is valid:

(1) A is closed, wu is integrally continuous on Q\A and du = f
in the distribution sense on Q\A;

(2) u is exteriorly differentiable on Q\A and du, = fx at each
point x € Q\A.

Then du = f in the distribution sense on Q.

The proof is completely similar to the proof of the Theorem 6.4, hence
omitted.

~ REMARK 6.11. For f =0 we obtain tests for a (p, g)-form to be
d-closed, and for p = g = 0 tests for a function u to be holomorphic. The
latter are well-known and due to Pompeiu [Pol] in the case n = 1. Our
theorem also extends the holomorphy tests of [BM] and [Shi] in the case
n > 2. Note that for n =2, p=q=0, A = ¢ and f = 0, we obtain the
classical Goursat lemma.

Before we conclude this section, let us note that Theorem 6.3 naturally
extends to the several complex variable setting and that this can also be used
to obtain holomorphy criteria (cf. also [L]).
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7. SOME APPLICATIONS TO HYPERCOMPLEX FUNCTION THEORY

The Clifford algebra associated with R” endowed with the Euclidean
metric is the enlargement of R” to a unitary algebra .7, not generated (as an
algebra) by any proper subspace of R” and such that x2 = — |x
any x € R”. By polarization, this identity becomes

2 for

Xy +yx=—2{x,)),

for any x,y e R". In particular, if {e;}7_, is the standard basis of R”,
one should have

eje,+exe = — 26jk .

Consequently, ef = —1 and e;e, = — e e; for any j # k. In particular,
any element u € ./, can be uniquely represented in the form u = EZZO
Zl’,lzku,e,, with u; € R, where e; stands for the product e; -e;, - ... - e;
if I =(i,1,,...,i;) (we make the convention that e, :=1). More detailed
accounts on these matters can be found in [BDS], [Mi].

The higher dimensional analogue of the form dz extensively used in the

complex analysis of one variable is the .«Z,-valued (n — 1)-form

wi= Y (= 1)i-lejdx A AAX A AdX, .
j=1

For a compact Lipschitz domain Q in R”, we let do stand for the usual
surface measure induced on 8Q by the Euclidean metric on R”, and let N
denote the outward unit normal to Q defined do-almost everywhere on 0Q.
As R" C o/,, the vector valued function N can also be regarded as
a .o7,-valued function on 8Q. In fact, if 1 denotes the inclusion of 3Q
into R", then

1*¥(w) = Ndo .

An .o7,-valued function u defined on an open subset Q of R” is called
integrally continuous, etc, provided the .o7,-valued (n — 1)-form uw has
the corresponding property. Recall the generalized Cauchy-Riemann operator

D:= Z €; 8,- .
j=1
Let Z(Q) be as defined at the beginning of §6. We also make the following
definition.
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DEFINITION 7.1.

(1) If u= Y ure; Is an o/,-valued function defined on £ C R”
whose components (u;); are differentiable functions at a point a € Q
then we define the action of D on u at ae€Q by

n , 6
DOw) @):=Y ¥ 2 (a)eres .
i—1 1 0X;

2) If u and f are two locally integrable .<f,-valued Sfunctions
on Q, then we say that Du = f in the distribution sense on € provided

H (Dy)udx = —“ v fdx

for any real-valued, smooth functions \, compactly supported in .

(3) A locally (n— 1)-integrable, .</,-valued function u is called
Clifford differentiable at a € Q if the limit

1
u'(a):= lim Nudo
( ) Qia }‘vn(Q) saQ

exists in .<Z,.

The solutions of the (generalized) Cauchy-Riemann equations Du = 0
are called monogenic functions.

The theorems we are about to describe now are more or less immediate
corollaries of the results obtained so far and we shall omit the proofs.

THEOREM 7.2. Let u be a integrally continuous </,-valued function
on the open set Q of R" C «Z,. The following are equivalent.

(1) There exists f e L. (Q, «/,) such that

loc

S Nudo = H JSdx
00 0
for any Qe Z(Q).

(2) There exists a real-valued, positive function g e L'(Q,loc) such

that
Q

s Nudo
8Q

for any Q e Z#(Q).
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(3) Forany Qe #(Q) andany &> 0, thereexists & >0 such that

S Niudﬁi
0Q;

Jor any subdivision (Q;))iec;r of Q and any JCI such that
Ziejkn(Qi)SS-

(4) The function u is Clifford differentiable almost everywhere on Q,
u’ is locally integrable on Q and

s Nudo = “l u'dx
3Q 0
Jor any Q e #(Q).

(5) The function u is Clifford differentiable almost everywhere on Q,
u’ is locally integrable on Q and

5 Nudcs:gj u'dx
0K K

for any compact Lipschitz domain K C Q.
(6) Du, taken in the distribution sense, belongs to L[ (Q, .Z,).

loc

))

ield

<E,

If these equivalent conditions are fulfilled, then also u’ = Du a.e. on Q.

THEOREM 7.3. Let u be a o/,-valued, uniformly (n — 1)-integrable
Sunction in R", which is absolutely continuous in the special Lipschitz
domain Q of R" C «,. Also, suppose that suppu is compact.

Wa_i(suppu N Q\Q) =0,

u is integrable on bQ, and that Du is integrable on Q.

Then
§ Nudo = §§ Dudx .
hQ o)

The next application is a refined version of the Pompeiu integral repre-
sentation formula for .7, -valued functions ([Mo], [Te]). To this effect, we
shall call a locally (n — 1)-integrable function wu mean-continuous at

aeQ if

Qla un—l(Q)

Also, let w, stand for the area of the unit sphere in R”.

lim—l—s | u(x) — u(a)|dos =0 .
9Q
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THEOREM 7.4. Let Q be a compact Lipschitz domain in R" C o,
and let u be a f,-valued, uniformly (n — 1)-locally integrable function
on R7", which is absolutely continuous on Q and meaig—conz‘inuous
almost everywhere on Q. Then, at almost every point a € Q, we have

X742 (Du)(x)dx.

Q|x_a$n

1 Z2~X 1
u(a) = — — NM®u(x)do(x) + — H
W Joqla—x]|" O,
This extends the results in [Te], [Mol, [Bol, [BDS], [HL]. Moreover, a
similar result is valid for the Martinelli-Bochner integral representation
formula (cf. [HL}).

THEOREM 7.5. Assume that Q is an open subset of R" C .o7,.
Let u be a locally integrable, </,-valued function which is also locally
(n — 1)-integrable on Q. Let (C,), be an at most countable collection of
closed subsets of Q such that each pair (u,C,) satisfies one of the
conditions (a)-(y) stated in §6. Set A:= u,C, and also let [ be a
locally integrable </,-valued function on Q.

Assume that at least one of the following conditions holds:

(1) A isclosed, u isintegrally continuouson Q\A and Du = f in
the distribution sense on Q\A;

(2) u is Clifford differentiable at each point of Q\A and
u'(x) = f(x) forany xe Q\A.

Then Du = f in the distribution sense on .

Note that, for f = 0, Theorem 7.3 gives sufficient conditions for u to be
monogenic. These are substantially weaker than the ones presented in the
literature (cf. e.g. [BDS]).

In our final application we briefly explain how the above theorem
extends to more general linear first order differential operators. In doing
so, it is convenient to slightly alter the definition of uniform locally
(n — 1)-integrability, and replace (4.1) by

S luldo < ¢.
C

With this modification, the uniform locally (n — 1)-integrability condition

becomes invariant under multiplication with locally bounded functions.
Also, a locally (n — 1)-integrable function will be called locally integrally

bounded in Q, if for any K € comp (Q2) there exist 6, k > 0 such that for
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any Lipschitz (n — 1)-dimensional submanifold C of R”, C C K, with
L,-1(C) < 6 we have ‘

s |luldo < x .
C

Consider now a linear, first order, differential operator

n
P=ay(x)+ ) a;(x)d;,
j=1
where the .2/,-valued functions «,, ..., a, are locally Lipschitz continuous
on Q, and aq is a locally essentially bounded function on Q. Let P* stand
for the formal transpose of P, i.e.

P* = (ao(x) —.Z (;a;) (x))+ Y aj(x)9; .

j=1
Also, for any & € R”, the symbol of P is defined by 6,(§) : = Z;zléjejaj.
Recall that for two .7,-valued, locally integrable functions # and f on Q
we have that Pu = f in the distribution sense, if

oo

for any real-valued test function y on Q.
Let u be a locally (n — 1)-integrable function on Q. We shall say that u
is P-differentiable at x € € provided that the limit

Pu(x):= lim

1
Pr(1)u + (N ud
lexn<Q){§SQ ’ LQG - G}

exists in .«Z,. Proceeding as in Theorem 6.2, one can readily see that if u
is actually differentiable at x € Q, and if

lim

i Hglaom —ap(x)|dy =0,

then u is P-differentiable at x and Pu(x) = ao(x)u(x) + Z;z a4 (x)0;u(x).
The following result is an extension of Theorem 3.1.10 in [HO].

THEOREM 7.6. With the above definitions, consider u,f two locally
integrable /,-valued functions on Q, and let (C,), be an at most
countable collection of closed subsets of Q. Assume that u is also locally
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integrally bounded. Suppose that at least one of the following conditions
holds:

(1) for each v, the pair (u,C,) satisfies the condition (o),

(2) a,=0 and for each v, the pair (u,C,) satisfies one of the
conditions (a.) — (y).

Finally, set A:= u,C, and assume that u is P-differentiable at each

point of Q\A and that Pu(x)= f(x) for any xe€ Q\A. Then
Pu = f in the distribution sense on Q.

Let us finally note that, due to the non-commutativity of the Clifford
algebra .o/, for n > 3, the results presented in this section are not in the most
general form. For instance, one could consider the Clifford differentiation
operator defined for ordered pairs of .</,,-valued functions (u, v) by

(u,v) := lim

ola An(Q)

for which all our techniques apply as well (cf. also [Hel, 2]). However, we
leave the details of this matter to the interested reader.
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