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214 B. SHIFFMAN

sion 2n — 1 in #g,, it follows that y o (f X g) vanishes on the connected
component of Q N .#p,  containing (zo,2¢). After shrinking U if neces-
sary, we can assume that y o (f X g) vanishes on Q n .#p and thus
(f xXg)(Qn Mg ) C #p,. We consider the embedding 1 x 1:C, x C,
S P¢ x Pg ogiven by 1(zy,...,2,) = (/= 1:2,:...:2,), which maps .#3,
onto a (dense open) subset of .#¢. By Corollary 7 applied to the maps

f=1ofor-t:aU)»uU), g=10goi-1:u(V)=1(V),

there exists A € PGL(n + 1, C) such that f = A |,y,. Thus f extends to the
fractional linear map 1-! © 4 © 1, which gives an automorphism of B,,.

We now give a simplified form of Alexander’s proof [Al, p. 250] that the
Jacobian matrix of the map f must be nonsingular at some point of
U n 0B,. We begin by observing that f~!1(dB,) is nowhere dense. Indeed,
suppose on the contrary that f ~!(dB,) contains a connected open set U, and
assume without loss of generality that f(z,) = (1,0, ...,0) for some point
Zo € Uy. Then by the maximum principle, f; = 1 and hence f = (1,0, ..., 0)
on U, and thus on U, contradicting the assumption that f is nonconstant.
Now suppose on the contrary that the Jacobian determinant of f vanishes
identically on U n 8B,,. Since the zero of the Jacobian determinant is an
analytic subvariety, the Jacobian determinant must vanish identically
on U. As a consequence, the fibers of f contain no isolated points. Assume
without loss of generality that (1,0, ..., 0) € U and choose r < 1 such that the
spherical cap W:= {z € B,:Rez; > r} is contained in U. Choose a point
p € W such that f(p) ¢ 0B,. Let A be the connected component of
f~'(f(p)) n W that contains p; A is an analytic subvariety of W of
positive dimension. Furthermore A\A C{zeCr:Rez; = r}. By the
maximum principle (see for example [Gu, Theorem H2]) applied to the
holomorphic function ¢: A — C given by ¢(z) = exp z,, we conclude that ¢
is constant and thus A\A = @ so that A is a compact subvariety of W of
positive dimension, which is impossible. [
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