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let G {e, t} • PGL(jz + 1, C), where t:P£-+P£ is given by t(z) Z

and e is the identity map. By Lemmas 5 and 4 applied to the restrictions

f\uj, there are transformations Aj e G such that f\u/= Aj\ Uj- Since an

element of G is uniquely determined by its values on a nonempty open subset

of VnK and (C/jU-'-u Uj) n Uj+l ± 0, it follows by induction that

Aj Ai for all j. Hence / A\ |

u> 0

3. The Poincaré-Tanaka and Chern-Ji theorems

The Segre family JlBn mentioned in the introduction has the projective
analogue

^/nK= {(z,w) eP"KxV"K: £ ZjWj 0}
j o

(In fact ,£nK is a compactification of JlBn\ see the proof of Corollary 8.)
We let 71/: PnK x P^ -> P^ denote the projection to the z-th factor, for
i 1,2. The main result of this section is the following generalization of the
Chern-Ji theorem [CJ, Theorem 2] ; our generalization says that a pair of
local homeomorphisms of VnK (K R or C) mapping J/\ into itself must be

projective-linear, or possibly anti-projective-linear (if K C):

Theorem 6. Let (a1, a2) e JlnK, where K R or C, n ^ 2.

Let Ui,U2 be open sets in VnK containing a1, a2 respectively, and
let Vi be the connected component of ni{JénKc\ Ux x U2) containing
#i, for i 1,2. If fi : Ui PnK (i 1,2) are continuous injective maps
such that

if I X f2) {jrK n [/] x U2) C JtnK

then there exists A e PGL(/z + 1,1) such that

(i) fi= A on V1 and f2 tA~1 on V2% if K R,

(ii) either (i) holds or fx=A on V{ and /2 L4 - 1 on V2,

ifK= C.

Remark. If the sets iii{JénKc\ Ux x U2) are connected, then
Vf 7ii{JInK n Ui x U2) and we have JtnK n Ux x U2 n Kj x K2.
In fact, if we assume that only one of the projections Tti n Ux x C/2)
is connected, then by the uniqueness of A it follows that the conclusion
of Theorem 6 holds with Vt iii(^nK n^x C/2), for i 1, 2.



212 B. SHIFFMAN

Proof of Theorem 6. For a point we Pj we write

w1 {z e PnK: z ' w 0}

where z * w Y,"=0ZjWj, For a subset S C PJ we also write

S1 {z e z - w 0 Vw e E}

We consider the collection of lines

So {Le n(/2^},
which is open in i?(Fj). If z is an arbitrary point of Fj, then by hypothesis
we can choose w e U2 such that (z, w) e JtnK. If we let L be any projective
line in w± containing z, then w e L± n U2 and hence L e S0. Therefore

U^0 3 V\

Now let L e 0 be arbitrary. We claim that we can choose points
w1, wn~l e LL n U2, such that fi{wl),...,f2(wn~l) are in general

position: If n 2, the claim is a tautology, so suppose n ^ 3. If the claim
were false, then f2(LL n C/2) must lie in a projective linear subspace

P (E) of dimension n - 3 (where E is a linear subspace of Kn +1 of
dimension n - 2). But then /2 would be a continuous injection from
(T± n t/2), which has topological dimension n - 2 ox In - A (depending on
whether K equals R or C), into P(i?), which has topological dimension n — 3

or In - 6. This contradicts dimension theory.
Let w1, wn~l e LL n U2, such that /^(w1)^.., f2(wn~l) are

in general position, as above. By moving the points slightly if necessary, we

can assume also that are in general position, and hence

L < w1, wn~ 1 >x. We note that by hypothesis, /i (w-1 n Ux) C fi(w)L
for all w e U2. Therefore

n - 1 n - 1

fl(LnUl)= H /i(^ni/,)C Pi f2{y*jY
j=1 7=1

Let G be the group of projective-linear, and if K C, anti-projective
linear, transformations of P^ as in the proof of Theorem 3. By Theorem 3,

there exists A e G such that f{=AonV{; similarly, there exists B e G such

that f2 B on F2. By replacing fx x f2 with fx x f2 if necessary, we can

assume that A e PGL(n + 1 ,K). We now show that B 1A ~1 : Let M be

the connected component of JénK n Ux x U2 containing (a1, a2). Fix a point
w e n2(M) C V2, and choose z1, ...,zAî e w1 n in general position.
Then (AzfBw) (fx (zy), f2 (w)) e JénK since (zy, w) e Jt|, and thus
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0 Azj * Bw zj ' (ABw

for j 1, n. Therefore lABw e w±A- {w}. Since w is an arbitrary point

of % 2 (M) and since elements of G are uniquely determined by their values

on the open set n2(M), it follows that fAB is the identity e e G, and

therefore B rA 1 e PGL(fl + 1 ,K).

Corollary 7 (Chern-Ji [CJ, Theorem 2]). Suppose U, U, V, V

are connected open sets in Pnc such that JlnQ n U x V =£ 0. If
A A

f:U-+U,g:V-+V are biholomorphic maps such that

(/ x g) {^rc nüxV) C Jtnc

then f and g are restrictions of elements of PGL(« + 1,C).

We conclude this paper by demonstrating how the following theorem of
Poincaré and Tanaka is obtained from Corollary 7.

Corollary 8 (Poincaré-Tanaka Theorem) [Po], [Ta]. Let Bn denote
the unit ball in Cn,n ^2. Suppose that U is a connected open set
in Cn such that U n dBn ^0. If f:U~^Cn is a nonconstant holo-
morphic map such that f(U n 87^ C 8 Bn, then f\unBn extends to an

automorphism of Bn.

Proof. By an elementary argument given by H. Alexander ([A], p. 250]),

we can assume that the Jacobian matrix of / is nonsingular at some

point Zo£UndBn. (We shall give Alexander's argument later.) By
replacing U with a neighborhood of zo, we can assume that / is injective.
Let t: C" -> Cn be the conjugation z. Let V t(U) and consider the

holomorphic map g to / o t : V Cn. We let U f(U), V g(V)
A A A

t(U) so that the maps f-.U^-U, g : V ^ V are biholomorphic. We
let i|/ denote the function on C" x C" given by v|/(z, vv) VZjWj — 1

and we consider the "Segre family"

-^B„{(z, w) 6 C" x C" : I|/(z, 0}

Let S-.C"^C2n be given by S(z) so that dB„ and
S f (fx g) S. Let D Ux V and S(dB„) n S(Cn).

Then

(/ x g) (£2 n AO S o f(Un9 C 5(95„) N C .//s„

Choose a point z0eUr\dB„; then (z0 ,z0) eQ nN. Since v|/ o (/ x
vanishes on fi n /V and IV is a totally real submanifold of (real) dimen-
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sion In - 1 in JéBn, it follows that \j/ ° (/ x g) vanishes on the connected

component of Q n y^Bn containing (Zo,Zo). After shrinking U if necessary,

we can assume that vp ° (/ x g) vanishes on Q n JtBn and thus

(/ x g) (Q n JéBt) C JtBn- We consider the embedding i xisC„ x C„

^P"cxPj given by i (z\, zn) ' Zi : : zn), which maps JtBn
onto a (dense open) subset of JénQ. By Corollary 7 applied to the maps

/ io f g=xogo -> i (V)

there exists A e PGL(« + 1, C) such that / A |l(f/). Thus / extends to the

fractional linear map i ~1 o A o i, which gives an automorphism of Bn.

We now give a simplified form of Alexander's proof [Al, p. 250] that the
Jacobian matrix of the map / must be nonsingular at some point of
U n dBn. We begin by observing that f~l(dBn) is nowhere dense. Indeed,

suppose on the contrary that /~1 (dBn contains a connected open set U0 and

assume without loss of generality that f(zo) (1,0, ...,0) for some point
Zo e U0. Then by the maximum principle, fx 1 and hence / (1, 0, 0)

on Uq and thus on U, contradicting the assumption that / is nonconstant.
Now suppose on the contrary that the Jacobian determinant of / vanishes

identically on U n dBn. Since the zero of the Jacobian determinant is an

analytic subvariety, the Jacobian determinant must vanish identically
on U. As a consequence, the fibers of / contain no isolated points. Assume

without loss of generality that (1, 0, 0) e U and choose r < 1 such that the

spherical cap W: {z e Bn : Rezi > r) is contained in U. Choose a point

p e W such that f(p) $ dBn. Let A be the connected component of
/_1 (/(/?)) n W that contains p\ A is an analytic subvariety of W of
positive dimension. Furthermore A\A C {z e C":Rezi r}. By the

maximum principle (see for example [Gu, Theorem H2]) applied to the

holomorphic function (p : A -> C given by cp (z) exp z i, we conclude that cp

is constant and thus A\A =0 so that A is a compact subvariety of W of
positive dimension, which is impossible.
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