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PROJECTIVE GEOMETRY AND POINCARE’S THEOREM 203
2. THE LOCAL COLLINEATION THEOREM

In this section, we show that continuous local collineations of real
or complex projective space are projective-linear or anti-projective-linear
(Theorem 3). Our methods involve using Desargues’ Theorem to extend to a
global collineation and then applying the fundamental description of
collineations over an arbitrary field (Proposition 1).

We let &% denote the set of projective lines in projective n-space P}
over a field K. (We are interested here in the cases K = R or C.) Note
that & % can be identified with the Grassmannian of 2-dimensional subspaces
of K"*!. A collineation on P} is a bijective self-map f:P% — P% such
that f(L) e L% for all L € & %. Examples of collineations on P(K"*1!)
are provided by elements of the projective linear group PGL(n + 1, K)
= GL(n + 1, K)/(K\{0}). However, these are not the only collineations. We
let the group Gal(K) of automorphisms of K (the Galois group of K over its
prime field, Z, or Q) act on P} by

g(z) = (gzo:...:8z,) for geGal(K), z=(z0: " :2,) € P};

then elements of Gal(K) also give collineations on P%. The following

well-known result (see [Ar, Theorem 2.26]) states that these examples provide
all the collineations on P%:

PROPOSITION 1. Let f:Py—PY% be a collineation, where n > 2
and K is an arbitrary field. Then there exist a unique A € PGL(n + 1, K)
and a unique g € Gal(K) such that f =go A.

We shall use of the following immediate consequence of Proposition 1:

COROLLARY 2. Let f:Py— Py be a collineation, where K =R
or C,n>2. Suppose [ s continuous on a nonempty open subset of
Pi. If K=R, then fePGL(n+ 1,R). If K=C, then either f or
f isin PGL(n+ 1, C).

We let (ay,...,a,) denote the projective linear subspace of P}
determined by the points ay, ..., a, € P%. In particular, (a,b) is the
projective line through @ and b (for ¢ # b € P7%). We also let g denote the

one-point set {a) = {a}. We now give a short proof of Proposition 1.
First we need two well-known, elementary lemmas:

LEMMA (a). Let f:Py—P% be a collineation. If ai,...,a,, are
points in general position in P%., then f (a1), ..., f(an) are in general
position and f({a,, ..., a,)) = {f(a,), v flan)).
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Proof. 1t suffices to consider m < n + 1. If m = 1 the conclusion is
just the definition of a collineation. So let 2 < m < n + 1 and assume by
induction that the lemma has been verified for m — 1 points. We write
f(a) = a. Since f({ay,...;@m-1)) =<@1,...,0m_,> and f is injective, it
follows that a,, & {4, ..., @m_; ) and thus @, ..., a,, are in general position.
The second conclusion follows from the fact that <a,, ..., a, ) is the union
of lines (&,,, b)Y, where b runs through the points of (A1, euy@m 1) []

LEMMA (b). Let f:Pyr—P%L be a collineation. If there exists
a line Le X% such that f|,:L— f(L) is projective-linear, then
f e PGL(n + 1, K).

Proof. Leté =(0,..,)1,..,00eK"*,0<,j<nd=2ey+ - +e5,
and let ey, ..., e,, O be the corresponding points in P%. Let f: P% — P} be as
in the hypothesis; we can assume without loss of generality that f | Ceo,eq) 1S
projective-linear. By Lemma (a), the po’i_g f(eo) f(e ), f(8) are in

general position. Choose representatives f(eg), ..., f(e ), f(cS) in K7+1\{0}
of f(ey), . f(e ) f(8) respectively. Let A; € K\{O} (0 <j < n) be given

by YA, f(e,)—f(é) and let Te GL(n+1,K) be given by T(e;)
=X, f(e,) Then T(8) = T, f(ej) = f(<3)

Let ¢ = T-! o f. Thus the lemma is reduced to the following statement:

(A,) Let ¢:Py— P bea collineation such that ¢ |.,..,, is projective-
linear, o©(e;) =e; (0<j<n), and ©(8) =95. Then ¢ Iis the identity.

We verify (A,) by induction on n. For n = 1 the conclusion is immediate. So

let n>2 and assume (A,_;). We write P% ' = (eo,...,e,_,) and
let 8 =(1:...:1:0) e P27}; thus (e,,8) n Pt~ ' ={8'}. By Lemma (a),
e®P2 "y =P2 ! and thus ¢(8’) = &’. Hence by (A,_,), ¢ is the identity

on P77'. If a line L € &% contains a point b ¢ P% ™' such that ¢(b) = b,
then @(L) = L, since L must contain another fixed point of ¢ in P} '
Let a € {ey,e,), a + ey, be arbitrary. Since {a} = (a,d) n {ey,e,) and
the points &, e, are fixed by ¢, it follows that ¢({a,0)) = {(a,d) and
p({eg,e,)) = {ey,e,> and thus ¢@(a) = a. Finally, let x € P:\<ey,e,)
be arbitrary. Since {x} = (a,x) n {e,,x), where a is as above and ¢
fixes a, e,, it follows as before that ¢(x) = x. [

Proof of Proposition 1. Consider the usual embeddings P, C P% C P}.
By Lemma (a), f (P2) is a projective 2-plane. Hence there exists a projective
linear map 7:f(P%)— P% such that the map f’' = To f|p2:Px—>P%
Jeaves the points (1:0:0), (0:1:0), (0:0:1) and (1:1:1) fixed. Then,
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for each a € K, we can write f'(1:a:0) = (1 :a:0), where aeK. We
observe that the map @ — a is an element of Gal(K). This follows from
the fact that if @, b € K, then a — b and a/b can be constructed from the
following “projective straightedge” constructions:

1 \
O/ZL-ZJ/b a 0 1\ a/b\ a-b a N
/

FIGURE O

(Figure 0 shows the affine plane K* C Pi.) Let g € Gal(K) with g(a) = a.
Then f'cg-! \p}( is the identity map, and it follows that the map
fog e :Py— f(Py) is projective-linear. Therefore by Lemma (b),
fog'l=A"€ePGL(n+1,K), and thus f=A"0cg=goA, where
A=g 'A'gePGL(n+ 1,K). [

For a subset U C Pk, we write
ZWU)y={Le Z%:LnU=0}.

We give the projective spaces Py, P¢ and the Grassmannians ¥, Z ¢
the usual metric topologies. The main result of this section gives a condition
for a local collineation to be projective-linear:

THEOREM 3. Let U be a connected open set in Py (n>2), where K
denotes either R or C, and let =, be an open subset of < (U)
such that U %y > U. Suppose that f:U— P% is a continuous injective
map such that f(L n U) is contained in a projective line for all L € Z,.
Then there exists A € PGL(n + 1,K) such that

Q) f=A|y, if K=R,
() f=Aly or f=A4ly, if K=C.
The case K = R of Theorem 3 follows easily from Prenowitz’s theorem

[Pr, Theorem V], which provides a much stronger result for » = 2. (We include
an elementary proof of the case K = R below.)
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We begin by proving the following weaker form of Theorem 3:

LEMMA 4. Let U be an open set in P (n>2), where K denotes
either R or C, and let f:U—- Py be a continuous injective map.
If f(LnU) is contained in a projective line for all L e L (U), then
the conclusion of Theorem 3 holds.

Proof. Let f:U— P, be as in the statement of the lemma, and
let f(U)= U. We write 4 = f(a) for a € U. Note that if three points
a,a,,a; of U are not collinear, then a,,a,,a; are not collinear, since
otherwise the sets f({a;,a,) n U) and f({a;,a3;) n U) would both be
neighborhoods of «, in the line (a,, @,) and hence f would not be injective.
We also observe that if L = {(a, b), where a, b are distinct points of U, then
by hypothes1s f(L nU)C {a, b) and in fact we have f(L n U)

= {a, b) A U. To verify this equahty, let x € <a, b) A U be arbitrary and
write y = X, where x € U. Since a, b % are collinear, it follows from the
above that x, a, b are collinear and thus x € L.

We first consider the case n = 2. Choose a connected open set U, C U.
Let x € P%. We want to defme x= f (x). Choose a, b € U, such that a, b, X
are not collinear. Let La,Lb € j(U) be given by f({a,x) nU) =L, N U
Fb, x> A U) =L, U We define %(a, b) € P2 by

L.nL,=2%(ab).

(Note that ﬁa #* ﬁb since {(a,x) # {b,x) and f is injective.)
We observe that if ¢’ € (a,x) n Uy, b' € (b, x) n U, with a’ # a,
b’ # b, then

X(a,b) = <a,4"y N (b, b’y .
In particular if x € U, then

A

2(a,b) =<4, %) n (b, %y =

STEP 1. X(a,b) is independent of the choice of a,b e U,.

We can assume by the above that xe¢ U. Let ae U, and Ilet
bo, b1 € Up\{a, x) be arbitrary. It suffices to show that X (a, bo) = X(a, b,).
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We first consider the case K = C. Let C be a real curve from b, to b,
in Uy\{a, x). Let € > 0, and suppose that b,, b3 are points in C such that
dist(b,, b3) < € (with respect to some metric on Pé defining the usual
topology). Choose a’,a’’ € {a,x) n U, with a,a’, a” distinct. Then let

s I V4 r7
b;, by, b, c, b

be constructed (in the above order) as in Figure 1 below.

FIGURE 1

We claim that a, by, b; are collinear: Let ¥ = (a, b ) n<a”, by);
to verify the claim, we must show that 4% = b3. By Desargues’ Theorem
[Co, 2.32; see Fig. 4.4a on p. 39] b;, b¥, x are collinear and thus

b¥ e (b, xyn<a",byy =bY

as desired.
We note that if b; = b,, then

by=0bi=b)=b,=c=b}.

Since C is compact, it follows that we can choose € small enough so that all
the labeled points in Figure 1 except x lie in U, whenever b,, b3 are pomts
of C with dist(b,, b3) < €. Again by Desargues’ Theorem, (a, a’), (bz, b 3.
and <19;, 19§’> are coincident. Thus

X(a,by) = <a,a’y n <b2,b Y = (a,a'y by, by

Ay

= (CAI ay n <b3, 3) :x(a,b3)-

A

It follows that x(a, by) = x(a, b 1), which completes Step 1 for the case
K =C.
We now suppose that K = R. (The proof must be modified for the

case K =R, since Uy\{a,x) may not be connected.) We may assume
without loss of generality that the line segment

def

C= {th+ (1 -1)b:0<t<1}
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is contained in U,. If Cn <a,x) = 0, then we conclude that X(a, bo)
= x(a, b;), by the proof for the case K = C above. On the other hand,
if Cn {a,x) =b’, then

X(bo,a) = X(bo, b") = X(bo, by) = X(b", by) = X(a, by) ,

which completes Step 1 for the case K = R.
We now write X = X(a, b) = f(x) for all x € P5.

STEP 2. [ is a collineation.

Let x, v,z be collinear. We must show that X, y,Z are collinear. Choose
collinear points a, b, c € Ug\<{x,y). Let a’, b’, ¢’ be as in Figure 2 below.
Wenotethatifa = b = ¢, thena’ = b’ = ¢’ = a. Thus we can choose distinct
collinear a, b, c € Uy\{x, y) such that ¢’, b’, ¢’ are in U,. By moving the
line (a, b) slightly if necessary, we can assume further that x, y,z ¢ <(a, b),
and hence a’, b’, ¢’ are distinct. By Pappas’ Theorem (see for example
[Co, 4.41 and Fig. 4.4a)), a’, b’, ¢’ are collinear. It further follows from the
above that no four of the nine labeled points in Figure 2 are collinear. By
the collinearity of f on U, the points &, Z;, ¢ are collinear and distinct, and the
same is true for 4’, b’, &; furthermore, no four of the points &, b, &, 4", b’, &
are collinear. Hence %, J, Z are distinct, and thus f is injective. Applying
Pappas’ Theorem again (with a, b, ¢, x, ¥, z,a’, b, ¢’ replaced by a, b,&, 4,
ZA)’, ¢’ x, )Az, Z, respectively), we conclude that X, ¥, z are collinear.

FIGURE 2

Finally, to show that f is surjective, let y € Pi be arbitrary. Choose
points o, a’,B,B" € (Afo = f(Uy) such that y = (a,a’) n(B,B"). The
points a,a’,B, B’ are the respective images of points a,a’, b, b’ € U,.
If we set x = (a,a’) n {b,b’), then y = X.

Hence f is a collineation. The case n = 2 then follows from Corollary 2.
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STEP 3. The proof for n > 2.

A

Let n> 2. We easily see that f takes 2-planes in U to 2-planes in U.
Let L e ' (U) be arbitrary. By applying the case n= 2 to a projective 2-plane
containing L, we see that f|, ~v:L n U~ L ~ Uis either projective-linear
or anti-projective-linear. If f|,~y is anti-projective-linear for one L, it
must be anti-projective-linear for all L (by the case n = 2), so by replacing f
with f_ if necessary, we can assume that f|; .y is projective-linear for
all L e Z(U). Now fix ae U. For x e P, define ¥ = T(x) where
T:<a,x)— {a,x) is the projective-linear transformation extending
fl¢a.xy ~nu. By applying the case n = 2 to the plane determined by a,a’, x
(for an arbitrary point a’ ¢ <a, x)), we see that x is independent of a. Thus
we can define f(x) = x. If x,y,7 are collinear and @ & {(x,y), then the
case n = 2 applied to the plane determined by a,x,y implies that X, ¥, 2
are collinear. The injectivity of f similarly follows from the case n = 2. To
show surjectivity, let x € P% be arbitrary, and choose a point a € (a,
N (A]\{&}. Then o is the image of a point @’ € U and f({a, a’)) = (&, a).
Hence y € <&, a) C image f.

Thus f is a collineation. The conclusion of the lemma follows as before
from Corollary 2. [

DEFINITION. A subset U of Py or P{ is said to be projectively convex
if L nU is connected for all projective lines L € & (U). (Note that if
U C R" C Py, then U is projectively convex if and only if U is convex.)

We use the following lemma to complete the proof of Theorem 3:

LEMMA 5. Let U be a projectively convex, open set in Pk, where
K denotes either R or C, andlet <, be an open subset of < (U)
such that U &y > U. Suppose that f:U— P% is a continuous injec-
tive map such that f(L n U) is contained in a projective line for each

Le Zy . Then f(LnU) is contained in a projective line for every
L e Z(U).

Proof. We again write p = f(p), for pe U. Let Le X(U) be
arbitrary, and let x € L n U. Since L n U is connected, it suffices to show
that there is a neighborhood V C U of x such that ¥, y,Z are collinear
whenever y,z € L n V. Choose a line L, € &, containing x. We can assume
that L, # L, since otherwise we are done. Choose w € L, N U, w # x. Next
choose a neighborhood ¥V C U of x such that (y, w) e Zo for all y e V.
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Let y,ze L nV. We must show that x, 9,2z are collinear. We can
assume that x, y, z are distinct points. Choose v € L n V distinct from x, y, 2
(see Figure 3). Since (v, w) € &, we can choose ¢ € L,\{x, w} sufficiently
close to w so- that the line L,=<(v,a) e &,. Let b=<y,w)n L,,
¢ =<z,w) n L,. By choosing a close enough to w, we can assume further
that a, b, c € U and the six lines

(x,b), {x,c), {(y,ay, {y,c), {z,a), {z,b)

are in &,. Let a’,b’, ¢’ be as in Figure 3. Since all the points and lines
of Figure 3 lie in a plane, we can use Desargues’ Theorem to conclude
that v,a’, b’,c’ are collinear. Write L' = (v,c’); thus a’,b’ € L’. Since
a’,b’,c’ (as well as b, ¢) converge to w as a > w, by choosing a sufficiently
close to w we can assume also that a’,b’,¢’ € U and L’ € &,. Since all
the labeled points in Figure 3 lie in U and all the lines in Figure 3 except L

are in <,, we conclude that the f-images of the points in Figure 3 lie in
A\ A\
the plane determined by the image lines L, and L,. We now apply Pappas’

Theorem to the image to conclude (as in Step 2 of the proof of Lemma 4)
that x, y, Z are collinear. [

FIGURE 3

Proof of Theorem 3. Choose a sequence {U;, U,, ...} of projectively
convex, open subsets of U such that U = U;.”: yUjand Uy v --- v Ujis
connected for each j > 1. If K=R, let G =PGL(n+ 1,R); if K =C,
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let G=1{e,1}-PGL(n+1,C), where 1:P{ > P¢ is given by 1(z) =2
and e is the identity map. By Lemmas 5 and 4 applied to the restrictions
flu,, there are transformations A, € G such that f v, = A jlv,. Since an
element of G is uniquely determined by its values on a nonempty open subset
of Py and (U;u - uU)n U, #0, it follows by induction that
A; = A, for all j. Hence f = A4,|y. [

3. THE POINCARE-TANAKA AND CHERN-JI THEOREMS

The Segre family .#p mentioned in the introduction has the projective
analogue

n
My ={(z,w) e PR X Pk: Y z;,w; =0},
i=0
(In fact .#% is a compactification of .#5 ; see the proof of Corollary 8.)
We let n;: Py x P%L — P} denote the projection to the i-th factor, for
[ = 1, 2. The main result of this section is the following generalization of the
Chern-Ji theorem [CJ, Theorem 2]; our generalization says that a pair of
local homeomorphisms of P% (K = R or C) mapping .#% into itself must be
projective-linear, or possibly anti-projective-linear (if K = C):

THEOREM 6. Let (a',a?)e #%, where K=R or C, n>2.
Let U,,U, be open sets in P7% containing a',a? respectively, and
let V; be the connected component of m,(M% U, x U,) containing
ai, for i=1,2. If fi:U; =Py (i=1,2) are continuous injective maps
such that

(1 X f) (MU x Uy) C My,
then there exists A € PGL(n + 1,K) such that
W) fi=A on V, and f,="A"' on V,, if K=R,
(i) either (1) holds or f_l =A on V; and f2= ‘A-Y on V,,
if K=C.

REMARK. If the sets m;(#x N U, x U,) are connected, then
Vi=mni(Myn U x Uy) and we have #% N U, x U, = My NV X V.
In fact, if we assume that only one of the projections n, (A% U, x U,)
is connected, then by the uniqueness of A it follows that the conclusion
of Theorem 6 holds with V; = (MU X Uy), fori=1,2.
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