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2. The local collineation theorem

In this section, we show that continuous local collineations of real

or complex projective space are projective-linear or anti-projective-linear
(Theorem 3). Our methods involve using Desargues' Theorem to extend to a

global collineation and then applying the fundamental description of
collineations over an arbitrary field (Proposition 1).

We let denote the set of projective lines in projective «-space
over a field K. (We are interested here in the cases K R or C.) Note
that «âf "K can be identified with the Grassmannian of 2-dimensional subspaces

of Kn + l. A collineation on PnK is a bijective self-map f :PnK~* PnK such

that f(L) e SLnK for all L e SfnK. Examples of collineations on P(iG + 1)

are provided by elements of the projective linear group PGL(«+l,if)
GL(« + 1 ,K)/(iT\{0}). However, these are not the only collineations. We

let the group Gal (if) of automorphisms of K (the Galois group of K over its

prime field, Zp or Q) act on P^ by

g(z) (gz0:... :gz„)for geGal(/Q, z (z0'•••: z„) e

then elements of Gal (A') also give collineations on The following
well-known result (see [Ar, Theorem 2.26]) states that these examples provide
all the collineations on PJ:

Proposition 1. Let f:PnK~+PnK be a collineation, where n^2
and K is an arbitrary field. Then there exist a unique A e PGL(« + 1, K)
and a unique g e Gal (if) such that f g o A.

We shall use of the following immediate consequence of Proposition 1 :

Corollary 2. Let f:PnK-±PnK be a collineation, where K= R
or C,n> 2. Suppose f is continuous on a nonempty open subset of
PK' If K — then f e PGL(« + 1, R). If K C, then either f or
f is in PGL(« + 1,C).

We let <tfi,...,öw> denote the projective linear subspace of P£
determined by the points a{, am e PnK. In particular, (a, b) is the
projective line through a and b (for a * b e PnK). We also let a denote the
one-point set (a) {a}. We now give a short proof of Proposition 1.

First we need two well-known, elementary lemmas:

Lemma (a). Let f. P^ P^ be a collineation. If a\, am are
points in general position in PnK, then /(fll), f(am) are in general
position and f«al9...,am))= (f(a{), f(am)).
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Proof. It suffices to consider m ^ n + 1. If m 1 the conclusion is

just the definition of a collineation. So let 2 ^ m ^ n + 1 and assume by
induction that the lemma has been verified for m - 1 points. We write

f(a) a. Since /«#!,..., am-X »= {ax, am-\> and / is injective, it
follows that am $ (ax, and thus ai,..., a/w are in general position.
The second conclusion follows from the fact that (ai, ...,am) is the union
of lines <am,b>, where b runs through the points of (â\, am^\ >.

Lemma (b). Lef /:P^->P^ a collineation. If there exists

a line L e 9? nK such that f\L:L^> f {L) is projective-linear, then

f e PGL(n + 1 ,K).

Proof. Let ëj (0, .../l 0) eiC + *, 0 ^ y ^ n, 8 9^ + • • • + ëf,
and let e0, 8 be the corresponding points in PnK. Let f: PnK -> P^ be as

in the hypothesis; we can assume without loss of generality that /| <eo,ei> is

projective-linear. By Lemma (a), the points /(e0), f(en), /(8) are in

general position. Choose representatives f {e0), f(en),/(ô) in + 1 \{0}
of f(e0)>...,f(en),f(8) respectively. Let e AT\{0} (O^y^/î) be given

by YJr^jf{ej) f (8), and let f e GL(n + 1,1) be given by T(ey)

- ^/S). Then T(8) - /(8).
Let cp T_1 o /. Thus the lemma is reduced to the following statement:

(A,j) Let cp:P£->P£ a collineation such that (p |

<eo,e,> A projective-
linear, (p(ey) e,- (0 <y ^ n), and (p(8) ô. Then (p is the identity.

We verify (A„) by induction on n. For n 1 the conclusion is immediate. So

let n^2 and assume (A„_i). We write PnK~1 (e0, i > and

let 8' (1 : : 1 : 0) e P^"1; thus <en, S) n P^-1 {8'}. By Lemma (a),

(p(Pj_1) « VnK~
1

and thus (p(8') 8'. Hence by (A„_i), cp is the identity
on P^_1. If a line L e 9?nK contains a point b $ P^-1 such that (p(Z?) b,

then (p(X) L, since L must contain another fixed point of (p in P^"1.
Let a e (e0, en), a e0, be arbitrary. Since {a} < a, 8 > n < e0, en > and

the points 8, en are fixed by (p, it follows that cp«a, 8» (a, 6) and

(p«£o, ß/i» <^o, e*) and thus (p(tf) a. Finally, let x e PnK\(e0, en)
be arbitrary. Since {x} (a, x) n <en,x>, where a is as above and (p

fixes a, it follows as before that q>(x) x.

Proof of Proposition 1. Consider the usual embeddings P[c P^C PJ.
By Lemma (a), f(J*2K) is a projective 2-plane. Hence there exists a projective
linear map T:f(P2K) -> P2K such that the map /' T ° /1P2 : P2K P^
leaves the points (1 :0 : 0), (0:1:0), (0:0:1) and (1:1:1) fixed. Then,
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for each a e K, we can write — (1 : a : 0), where a e K. We

observe that the map a ^a is an element of Gal(iO- This follows from

the fact that if a, b e K, then a - b and a/b can be constructed from the

following "projective straightedge" constructions :

(Figure 0 shows the affine plane K2 C P*.) Let g e Gal (if) with g(a) a.

Then f'cg~l\vlK is the identity map, and it follows that the map

/ 0 g'1 IpJ^Pje^/CPir) is projective-linear. Therefore by Lemma (b),

fog-i*=A'e PGL(tf + l,iO, and thus f A'og goA, where

A g~lA'g e PGL(fl + 1 ,K).

For a subset U C P^, we write

We give the projective spaces Pr,P£ and the Grassmannians

the usual metric topologies. The main result of this section gives a condition
for a local collineation to be projective-linear:

Theorem 3. Let U be a connected open set in PnK(n ^2), where K
denotes either R or C, and let be an open subset of A{U)
such that U i?o J U. Suppose that f:U~+ PnK is a continuous injective
map such that f (L n U) is contained in a projective line for all Le 0.
Then there exists A e PGL(« + 1, K) such that

(i) f A\U9 if K= R,

(ii) f A\u or f =A\u, if K= C.

The case K R of Theorem 3 follows easily from Prenowitz's theorem
[Pr, Theorem V], which provides a much stronger result for n 2. (We include
an elementary proof of the case K R below.)

Figure 0

Y(U) {L e ^\lL nU*0}
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We begin by proving the following weaker form of Theorem 3 :

Lemma 4. Let U be an open set in PnK(n ^2), where K denotes

either R or C, and let f:U~-> J*nK be a continuous injective map.

If f(LnU) is contained in a projective line for all L e 3f(U), then
the conclusion of Theorem 3 holds.

Proof. Let f:U-*VnK be as in the statement of the lemma, and

let f(U) U. We write à => f(a) for a e U. Note that if three points

ax,a2, a3 of U are not collinear, then âx ,â2,â3 are not collinear, since

otherwise the sets f({ax,a2) n U) and /«tfi,ff3> n U) would both be

neighborhoods of ax in the line (ax, a2) and hence / would not be injective.
We also observe that if L < a, b >, where a, b are distinct points of U, then

by hypothesis, f(L n U) C < a/b >, and in fact we have f(L n U)
< a9 b > n £/. To verify this equality, let % e < â, b n be arbitrary and

write % x, where x e U. Since a, b, x are collinear, it follows from the

above that x, a, Z? are collinear and thus x e L.
We first consider the case n 2. Choose a connected open set U0 C £/.

Let x e P2K. We want to define x - f (x). Choose a, b e U0 such that a, £, x
are not collinear. Let La,Lb e fd(U) be given by f((a,x) n U) La n U,

/(< £>, x> n U) Lb n U. We define x(a, Z?) e by

A A ^La r\ Lh x(a, b)
A A

(Note that ^ Lb since (a,x) ^ (b,x) and / is injective.)
We observe that if a' e (a, x) n U0i b' e (b,x) n C/0 with ^ ß,

b' ± b, then

x(ö,Z>) {à,à') n <S,5'>

In particular if x e C, then

x(a,b) (â,x) n <Z?,x> x

Step 1. x(a, b) is independent of the choice of a,b e U0.

We can assume by the above that x $ U. Let a e U0 and let

b0, b i e U0\(a, x> be arbitrary. It suffices to show that x (a, b0) x (a, b i).
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We first consider the case K C. Let C be a real curve from bo to b\

in U0\(a,x). Let s > 0, and suppose that b2, b3 are points in C such that

dist(Z?2> b3) < 8 (with respect to some metric on defining the usual

topology). Choose a', a" e (a,x) n U0 with a, a\ a" distinct. Then let

b'3, b3\ b'2, c, b2

We claim that a,b2,b3 are collinear: Let bf (a,b2) n (a",b2)l
to verify the claim, we must show that bf b'3'. By Desargues' Theorem

[Co, 2.32; see Fig. 4.4a on p. 39] b'3, bf, x are collinear and thus

bf e (b3,x) n (a", b2) b3

as desired.

We note that if b3 b2, then

b2 — b'3 — b3 b'2 c b'{ •

Since C is compact, it follows that we can choose 8 small enough so that all
the labeled points in Figure 1 except x lie in U0 whenever b2, b3 are points
of C with dist(Z?2, b3) < 8. Again by Desargues' Theorem, <a, a'), (b2,b2)
and (b3,b3) are coincident. Thus

x(a, b2) (a, à') n (b2, b2) - <a, à') n < b3, b3)
- {a, a') n <b3,b3) x(a, b3)

It follows that x(a,b0) =x(a,bl% which completes Step 1 for the case
K= C.

We now suppose that K R. (The proof must be modified for the
case K R, since £/o\(tf, x) may not be connected.) We may assume
without loss of generality that the line segment

def
C {^o + (1 — t)b\i 0 ^ t ^ 1}
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is contained in Ü70. If Cn <0, x) 0, then we conclude that x(a,b0)
x{a, b i), by the proof for the case K C above. On the other hand,

if Cn (a,x) b', then

x(&o, a) x(b0, b') x(b0, bx) x(b\bx) x{a,bx)

which completes Step 1 for the case K R.

We now write x x(a, b) f (x) for all x eV2K.

Step 2. f is a collineation.

Let a, y, z be collinear. We must show that x,y,z are collinear. Choose

collinear points a,b,c e U0\(x,y). Let a',b',c' be as in Figure 2 below.
We note that if a b c, then a' b' c' a. Thus we can choose distinct
collinear a, b,c e U0\(x, y) such that a',b',c' are in C0. By moving the

line (a, b) slightly if necessary, we can assume further that x, y, z $ (a,b),
and hence a\b\c' are distinct. By Pappas' Theorem (see for example

[Co, 4.41 and Fig. 4.4a]), a\ b\ c' are collinear. It further follows from the

above that no four of the nine labeled points in Figure 2 are collinear. By
A A Athe collinearity of / on £/, the points a, b, c are collinear and distinct, and the

same is true for a\ b \ c'\ furthermore, no four of the points à, b, c, a'/b', c'
are collinear. Hence x,y,z are distinct, and thus / is injective. Applying
Pappas' Theorem again (with a, b, c, x, y9 z, a \ b \ c' replaced by a, b, c, a',
b \ c\x,y,z, respectively), we conclude that je, y, z are collinear.

Figure 2

Finally, to show that / is surjective, let % e be arbitrary. Choose

points a,a',M'e[/o /(^o) such that x <a, a'> n <ß, ßThe
points a, a', ß, ß' are the respective images of points a, a\ b, b' e U0.

If we set x {a, a') n (b,b'), then x -£•

Hence / is a collineation. The case n 2 then follows from Corollary 2.



PROJECTIVE GEOMETRY AND POINCARÉ'S THEOREM 209

Step 3. The proof for n > 2.

Let n > 2. We easily see that / takes 2-planes in U to 2-planes in U.

Let L e 2j(U) be arbitrary. By applying the case n 2 to a projective 2-plane

containing L, we see that / | L n v : L n U ^ L r\ U is either projective-linear

or anti-projective-linear. If /|lhv is anti-projective-linear for one L, it
must be anti-projective-linear for all L (by the case n 2), so by replacing /
with / if necessary, we can assume that f\Lnu is projective-linear for
all L e 9?{U). Now fix a e U. For xeP;, define x T(x) where

T: (a, x)(a, x) is the projective-linear transformation extending

f \

(a,x) r\ u • By applying the case n 2 to the plane determined by a,a',x
(for an arbitrary point a' $ <#, x>), we see that x is independent of a. Thus

we can define / (x) x. If x,y,z are collinear and a $ (x,y), then the

case n — 2 applied to the plane determined by a, x, y implies that x, y, z

are collinear. The injectivity of / similarly follows from the case n 2. To
show surjectivity, let % e VnK be arbitrary, and choose a point a e (a,%)
n CA {a}. Then a is the image of a point a' e U and f((a, a'» (a, a).
Hence % e {a, a) C image /.

Thus / is a collineation. The conclusion of the lemma follows as before
from Corollary 2.

Definition. A subset U of or P£ is said to be projectively convex
if L n U is connected for all projective lines L e <Sf(£/). (Note that if
U C R" C Pr, then U is projectively convex if and only if U is convex.)

We use the following lemma to complete the proof of Theorem 3 :

Lemma 5. Let U be a projectively convex, open set in P£, where
K denotes either R or C, and let i?0 be an open subset of
such that U D U. Suppose that f:U~+ PnK is a continuous injec-
tive map such that f(Lc\ U) is contained in a projective line for each
L e 2yo • Then /(L n U) is contained in a projective line for every
L e y(U).

Proof We again write p f(p), for p e U. Let Le Sf (C/) be

arbitrary, and let x e L n U. Since In Lis connected, it suffices to show
that there is a neighborhood V C U of x such that x, y, z are collinear
whenever y,z e L n V. Choose a line Lx e containing x. We can assume
that Lx ± L, since otherwise we are done. Choose w e Lx n U, w # x. Next
choose a neighborhood V C U of x such that <y, w> e for all y e V.
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Let y,zeLn V. We must show that x,y, z are collinear. We can
assume that x, y, z are distinct points. Choose v e L n V distinct from x, y, z
(see Figure 3). Since (v, w) e i?o> we can choose a e Lx\{x, w} sufficiently
close to w so that the line La <u,a> e 5f0. Let b (y, w) n La,
c (z, w) n La. By choosing a close enough to w, we can assume further
that a, b, c e U and the six lines

<x,6>, <x,c>, (y,a), (y, c), (z,a), <z,b>

are in «âf0- Let a',b',c' be as in Figure 3. Since all the points and lines

of Figure 3 lie in a plane, we can use Desargues' Theorem to conclude

that u,a',b\c' are collinear. Write L' <t>, c'>; thus a\b' e L'. Since

a',b',c' (as well as b, c) converge to w as -> w, by choosing a sufficiently
close to w we can assume also that a',b\c' e U and L' e Since all
the labeled points in Figure 3 lie in U and all the lines in Figure 3 except L
are in i?0> we conclude that the /-images of the points in Figure 3 lie in

the plane determined by the image lines La and Lx. We now apply Pappas'
Theorem to the image to conclude (as in Step 2 of the proof of Lemma 4)

that x,y9z are collinear.

Proof of Theorem 3. Choose a sequence {Ux, U2, ...} of projectively

convex, open subsets of U such that U Uy°°= Uj and U\ u • • • u Uj is

connected for each j ^ 1. If K R, let G PGL(/? + 1, R) ; if K C,
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let G {e, t} • PGL(jz + 1, C), where t:P£-+P£ is given by t(z) Z

and e is the identity map. By Lemmas 5 and 4 applied to the restrictions

f\uj, there are transformations Aj e G such that f\u/= Aj\ Uj- Since an

element of G is uniquely determined by its values on a nonempty open subset

of VnK and (C/jU-'-u Uj) n Uj+l ± 0, it follows by induction that

Aj Ai for all j. Hence / A\ |

u> 0

3. The Poincaré-Tanaka and Chern-Ji theorems

The Segre family JlBn mentioned in the introduction has the projective
analogue

^/nK= {(z,w) eP"KxV"K: £ ZjWj 0}
j o

(In fact ,£nK is a compactification of JlBn\ see the proof of Corollary 8.)
We let 71/: PnK x P^ -> P^ denote the projection to the z-th factor, for
i 1,2. The main result of this section is the following generalization of the
Chern-Ji theorem [CJ, Theorem 2] ; our generalization says that a pair of
local homeomorphisms of VnK (K R or C) mapping J/\ into itself must be

projective-linear, or possibly anti-projective-linear (if K C):

Theorem 6. Let (a1, a2) e JlnK, where K R or C, n ^ 2.

Let Ui,U2 be open sets in VnK containing a1, a2 respectively, and
let Vi be the connected component of ni{JénKc\ Ux x U2) containing
#i, for i 1,2. If fi : Ui PnK (i 1,2) are continuous injective maps
such that

if I X f2) {jrK n [/] x U2) C JtnK

then there exists A e PGL(/z + 1,1) such that

(i) fi= A on V1 and f2 tA~1 on V2% if K R,

(ii) either (i) holds or fx=A on V{ and /2 L4 - 1 on V2,

ifK= C.

Remark. If the sets iii{JénKc\ Ux x U2) are connected, then
Vf 7ii{JInK n Ui x U2) and we have JtnK n Ux x U2 n Kj x K2.
In fact, if we assume that only one of the projections Tti n Ux x C/2)
is connected, then by the uniqueness of A it follows that the conclusion
of Theorem 6 holds with Vt iii(^nK n^x C/2), for i 1, 2.
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