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PROPOSITION 1.4. Let G be of type Z. If %(G)#0 then
v1(G; R) s trivial for any coefficient ring R.

Proof. The center, Z(G), is trivial, by [Got, Theorem IV.1]. Indeed,
a short proof of this fact is included below as Proposition 2.4. []

We end this section with the promised fourth definition of (X, R) in terms
of the transfer maps of [BG], [Ds3]. For y e I, coPsider P: X X ST-> X
as above. This defines ®7: X X S! = X X S! by ®"(x,2) = (®(x, 2), 2)
which is a fiber map with respect to the trivial fibration X - X x S! — S!.
There is an associated S-map (the transfer) T(P7): T SIJr - Y(X x SYH,.
Here, the subscript “+” indicates union with a disjoint base_point and
“Y>” denotes the suspension spectrum of a space. The S-map t(F) induces
a homomorphism in homology T(®7)4: Hy (S!; R) > Hy (X X S'; R).

THEOREM 1.5. Let R be a field. Then %, (X; R) = — psT(®7)(S']). [J
This is proved in §10.

2. DISCUSSION OF DEFINITION A;

To explain where Definition A; comes from, we must review some basic
facts about Hochschild homology. Then we show that the formula in
Definition A; is well-defined and homotopy invariant.

Let R be a commutative ground ring and let S be an associative R-algebra
with unit. If M is an S — S bimodule (i.e. a left and right S-module satisfying
(sim)s, = s(ms,) for all m e M, and s,,s, € S), the Hochschild chain
complex {C« (S, M), d} consists of C,(S, M) = S®" ® M where S®" is the
tensor product of n copies of S and

dis;® " X5, dm =5Q - Q s, ® ms,
n-1

+ Z (D1 @ @885+ 0 - ®s, Qm

i=1

(D" ® @Sy QX s,m .

The tensor products are taken over R. The n-th homology of this complex
is the n-th Hochschild homology of S with coefficient bimodule M. It is
denoted by HH,(S,M). If M =S with the standard S—S bimodule
structure then we write HH,(S) for HH, (S, M).
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We will be concerned mainly with HH, and HH, which are computed
from

> SRSOM S SOM S M
S5 R®m = 5,Qms; —s15QQm+ 5, & s,m
S@m = ms— sm

Next, we consider traces in Hochschild homology. If 4 is a square
matrix over M, we interpret its trace Y A;; as an element of M (i.e. as a
Hochschild 0-cycle). The corresponding homology class is denoted by
T9(A) e HH (S, M). If Ai,i=1,...,n, are ¢; X q;,, matrices over S
and B is a ¢g,+; X g, matrix over M, we define A!® - ® A" ® B to
be the g, X g; matrix with entries in the R-module S®” ® M given by

(Al®.'.®An®B)ij= Z;C A},k2®Ai2,k3®...®Aznakn+l®Bkn+lsj'

Kysowskng

The trace of A'® -+ ® A" ® B, written trace(A'® -+ ® A” ® B), is
Y AL, ®AL @ @A . @By, .k -

ki ko, oo kns
which we interpret as a Hochschild #z-chain. Observe that the 1-chain
trace(A ® B) is a cycle if and only if trace(4AB) = trace(BA), in which case
we denote its homology class by 7:(A ® B) e HH,(S, M). In the appli-
cation below, S will be a groupring over the ground ring R and M = S.
We will use the notation G, for the set of conjugacy classes of a group G.
The partition of G into the union of its conjugacy classes induces a
direct sum decomposition of HH,(ZG) as follows: each generating
chain c=g;,® - ® g, ¥ m can be written in canonical form as
g1® " ®g, ®g, g 'eg where we think of g=g - g.meG
as “marking” the conjugacy class C(g). All the generating chains occurring
in the boundary d(c) are easily seen to have markers in C(g) when put into
canonical form. For C € G, let C4x(ZG)c be the subgroup of C4(ZG)
generated by those generating chains whose markers lie in C. The decom-
position ZG = @ ceg,ZC as a direct sum of abelian groups determines a
decomposition of chain complexes Cyx(ZG) = Dceg,Csx(ZG)c. There
results a natural isomorphism HH.(ZG) = @ ceg, HH«(ZG)c where the
summand HH, (ZG)c corresponds to the homology classes of Hochschild
cycles marked by the elements of C. We call this summand the C-component.
Given any ZG-ZG bimodule N let N be the left ZG module whose under-
lying abelian group is N and whose left module structure is given by
gm = g-m- g~ There is a natural isomorphism HHy(ZG,N) = H, (G,N)
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which is induced from an isomorphism of the Hochschild complex to the bar
complex for computing group homology; see [I, Theorem 1.d]. The
decomposition 7G = @ce,ZC is a direct sum of left ZG modules,
inducing a direct sum decomposition H (G, Z@) = @ceg, H+ (G, ZC).
Choosing representatives gc € C we have an isomorphism of left ZG
modules ZC = Z(G/Z(gc)) where Z(h) ={ge G|h = ghg~'} denotes
the centralizer of he G. Since H.(G,Z(G/Z(g¢))) is naturally
isomorphic to Hy(Z(gc¢)), we obtain a natural isomorphism HH,(ZG)
= @cec, H«(Z(gc)); furthermore, HHy(ZG)c corresponds to the
summand H.(Z(gc)) under this identification. In  particular
HH,(ZG) = Z.G,, the free abelian group generated by the conjugacy classes,
and HH,(ZG) = @ cec,Hi1(Z(gc)), the direct sum of the abelianizations
of the centralizers. Indeed, if g ® g ~'gc is a cycle then its homology class
in HH,(ZG) corresponds to {g} € H,(Z(g¢)).

The augmentation €: ZG — Z can be viewed as a morphism of ZG-ZG
bimodules, where Z is given the trivial bimodule structure, or as a morphism
£:ZG — Z of left ZG-modules. Then there is an induced chain map
C.(2G,Z1G) 5 Cy«(2G,7Z) and a commutative diagram:

€

HH,.(2ZG,2G) - HH,(ZG,7)
w ] w |
H.(G,ZG) > H(G,Z)

where the vertical arrows are isomorphisms.
Recall the abelianization homomorphism A: ZG — G,, = H,;(X) = H,(G)
used in Definition A;.

PROPOSITION 2.1. If Y ,ci® n; € C{(ZG,Z) is a Hochschild 1-cycle
representing z € HH\(ZG,Z), where c;, € ZG and n,eZ, then
n(z) = ¥;A(c;in;) € H(G).

Proof. This follows from the fact that d: ZGRZGRZ>ZG R Z

becomes g, ® g, ® 1~ (g2 — 8182+ &) ® 1. One easily shows that the
map g ® 1~ A(g) induces pn. [

With notation as in §1 let DY Ck(X) Ck+1()~() be the lift
of D!. Write 8 = @®,98,, D= @ (- l)"“DY and I = @k(—l)kldk
(v1ewed as matrices). The chain homotopy relation becomes D8 — §Dv
=7 (1 =m4(y)~!) [Explanation: the minus sign occurs on the left because
of the sign convention built into the matrix DY; the right hand side is
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thus because the 0-end of the homotopy F?” is lifted to the identity, while
the 1-end is lifted to the covering translation corresponding to M. (y); the
inversion occurs because we have G acting on the right.]

PROPOSITION 2.2. %,(X;R)(y), as given in Definition A,, is inde-
pendent of the choice of the cellular homotopy F?Y representing v.

Proof. 1t is enough to consider the case R = Z. We must show that if
Fl=F}: X xI— Xrel X x {0,1}, with corresponding chain homotopies
DYY and D%, then A (trace(dD'7)) = A (trace (D> 7)).

There is a degree 2 chain homotopy Ek Ck(X ) — Ck+2()~( ) such that
E. .0, — 8k+2Ek = D{ L D{ .- Write E = @ (- 1)"+2Ek (viewed
as a matrix). Then Ed + 8E =D7 — DY. So trace(d ® (D! —- DY)

= dtrace(é ®0® E) is a Hochschild boundary. The desired result now
follows from Proposition 2.1. [

Direct calculation yields:
23) d(trace(® ® D)) = %(X)(1 =M, (¥) 1) .

This leads to a quick proof (translating an idea of Stallings [St]) of an
important theorem of Gottlieb [Got, Theorem IV.1]:

PROPOSITION 2.4. If y(X) # 0 then < (X) is trivial.

Proof. Since y(X) # 0, (2.3) shows that every (1 — 1, (y) ~!) represents
0 € HH,(ZG). This implies that n,(y) = 1. [ :

PROPOSITION 2.5. In the Hochschild complex, C:(2G,1G),
trace (5 X IBV) is a cycle.

Proof. If x(X) =0, use (2.3). If %(X)#0, use (2.3) and Pro-
position 2.4. []

Define the lz'ft of xl( - 7) to be the function X, (X):T - HH, (ZG) which
takes vy to T} (6 ®DY) the homology class of the cycle trace(a ®DV)
The proof of Proposition 2.2 shows that this is also independent of the choice
of FY representing 7.

There is a left action of Z(G) on HH,(ZG). At the level of chains it
is defined by

O (g® "R RIM=g® " Qg X mw-1)

where @ € Z(G). One easily checks that this action is compatible with d
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and hence makes HHy(ZG) into a left Z(G)-module. The summand
HH.(ZG)c is taken by the left action of ® isomorphically onto
the summand HH4(ZG)c,-1 where Cw-! is the conjugacy class
{go-'[ge C}.

Since n maps I into Z(G), n defines a left action of I' on Cx(ZG, 1G)
and on HH,(ZG). By considering lifts of homotopies, we clearly get:

PROPOSITION 2.6. When HH,(ZG) is regarded as a left I'-module,
X,(X) becomes a derivation; Ii.e. X,(X)(v172) = X0 (X)(y1) +
Y1 X1 (X)(v2). [

Derivations modulo inner derivations yield one-dimensional coho-
mology; in particular, X, (X) defines a cohomology class ¥(X) = [5(1(X )]
e H\(T, HH,(ZG)).

The derivation X, (X) depends on the choice of lifts e of the cells e of X
(see §1). However, we have:

PROPOSITION 2.7. Up fto inner derivations, XI(X ) is independent of
the choice of cell orientations and of the choice of lifts. Hence %,(X) isa
well-defined cohomology class.

Proof. Another choice of cell orientations and lifts to the universal cover
determines a chain complex (Cj(X), 8%) and a chain homotopy E%: C}(X)
=3 C/'<+1()~()- By the ‘““change of basis formula”, [GN;, Proposition 3.3],
we have:

T'@Q' ®EY) - Ti(d®D") = TI({UR U-'(1 —n.(y)~ 1))

where U is the change of basis matrix. Since y = T (U® U-1(1 —n,(y) 1))
is clearly an inner derivation, the conclusion follows. [

We may regard Definition A, as defining a cohomology class % ;(X)
€ H'(I', H,(G)). Clearly we have:

PROPOSITION 2.8.  Under the homomorphism induced by ey: HH,(ZG)
= H\(G), X1(X) is taken to v;(X). Thus Definition A, is independent of
the choice of lifts and y,(X) is homomorphism. [

Despite Propositions 2.2 and 2.8, the formula in Definition A, might
appear to depend on the CW structure of X. However, we have:
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THEOREM 2.9. The cohomology classes %,(X) and vy, (X) are
homotopy invariants.

Proof. Since &4 (%:1(X)) = %, (X), it is sufficient to show that ¥, (X)
is a homotopy invariant. Let X — Y be a homotopy equivalence. By making
use of mapping cylinders, we may assume without loss of generality that
X — Y is an inclusion of X into Y as a subcomplex. Choose orientations
for the cells of Y and oriented lifts of these cells to the universal cover,
Y, of Y. Let X = p~'(X) where p: Y = Y is the covering projection. Since
X & Y is a homotopy equivalence, X is the universal cover of X. Choose the
basepoint to be a vertex of X. Given y € I'' = ©,(%(Y), id), the homotopy
extension property allows one to find a self homotopy of the identity
Fr:Y X I—=Y which has the additional property that FY(X x I) C X.
Let D%:Cyx(Y)—~ Cx(Y) be the chain homotopy determined by F* and
let D% | be the restriction of D% to Cx(X). Let Cx (Y, X) be the relative
chain complex with boundary operator denoted by 9. Then D induces a
chain homotopy on this complex which we will denote by f)Zk. There is a
commutative diagram:

Ci(X) = Cu(Y) = Cu(Y,X)
DLl | DL | DY |
Ca(Y) = Cu(Y) = Cu(Y,X).
By [GN,, Proposition 3.5], we have that, in HH,(ZG):

7@ ® DY) - T,(d|®@D'|) = T1(d ® D) .

Although for a given yel', T (6* X D*) could, in principle,
be nonzero we will show that y— T, (04 ®D*) is a coboundary.
Let Cy = C*(Y, X ). Since X &Y is a homotopy equivalence, C is a
contractible chain complex. Let H*:é* - C_I* be a chain contraction.
Then D% is chain homotopic to Hyx(1 —n,.(y) ') via the chain homotopy
H.(DY% — H.(1 —m4(y)~1)). Using the given bases, we can represent )
and H as matrices over Zm;(Y). Reusing symbols, we write 3 =@,;9;,
H=®;(—1)+'H; (viewed as matrices). Then, by [GN;, Lemma 3.2],
T/(d®@DY) =Ti(d®H(l —nyu(y)~")) where H(1-m,(y)"!) is the
matrix obtained by multiplying each element of H on the right by
1 —nu(y) ' eZn(Y). Clearly, vy~ T,(0 ® H(1 =n,(y)~')) is an
inner derivation. It follows that the derivations y— T} (5 ®DY) and
vy~ T,(8 |® D"|) represent the same cohomology class.  []

COROLLARY 2.10. The formula in Definition A, is a well-defined
homotopy invariant of X. U
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