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SYNTHETIC PROJECTIVE GEOMETRY AND POINCARE’S THEOREM
ON AUTOMORPHISMS OF THE BALL

by Bernard SHIFFMAN')

1. INTRODUCTION

Let B, denote the unit ball in C”. In 1907, Poincaré [Po] showed that
any nonconstant holomorphic map f from a neighborhood U C C? of a
point z, € 8B, into C? which maps U n 9B, into 0B, must be the restriction
of an element of the Mdbius group of automorphisms of B,. This result
was generalized to n variables by Tanaka [Ta] and was given new proofs
by Pelles [Pe], Alexander [Al], Rudin [Ru], and others, and recently by
Chern and Ji [CJ]. Chern and Ji considered the “Segre family” of 0B,,

My, ={(z,W) € C"x C L z;w; =1},

and showed that if (zo, wo) € .#p, and if f, g are nondegenerate holo-
morphic maps from neighborhoods U, V of z,, wo, respectively, into C*"
such that f X g maps .#p, N (UX V) into .#,, then both f and g are
restrictions of elements of the Mobius group [CJ, Theorem 2]. The Poincaré-
Tanaka theorem follows easily from this result by considering the point
(zo,%20) € -.#p, and taking g(w) = f(w) (see§3). The method of Segre
families was also used in this context by S. Webster [We], who showed that

local holomorphic maps of nondegenerate real-algebraic hypersurfaces in C”
are algebraic.

In this paper, we show how the methods of Desarguesian projective
geometry provide an elementary proof of the Chern-Ji theorem. Since our
methods are “synthetic”, we do not use any differential geometry, and apart
from some complex analysis used in the proof of the Poincaré-Tanaka
theorem, our proofs use only linear algebra and point-set topology and are self-
contained (except for the omission of the proofs of the fundamental theorems
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of Desargues and Pappus, which can be found in most texts on plane projective
geometry, e.g. [Co]). In fact we show (Theorem 6) that the Chern-Ji theorem
extends to the case of continuous f, g (where the conclusion holds either
for f, g or for their conjugates). Our method is based on the principle that
a continuous local self-map of real or complex projective space is projective-
linear or anti-projective-linear (in the complex case) if it maps each line in a
sufficiently large family &, of lines into a line. For the case of the real
projective plane Pﬁ, this principle was stated by Blaschke and his co-workers
in the 1920s (see [BB, p. 91]) when Z,is a “4-web”’; i.e., &, consists of four
pairwise transversal families of lines, each covering the domain of the map.
A complete proof of this fact was given in 1935 by W. Prenowitz [Pr]
(see also [Re]). We give a simple proof of this principle for the case
where &, is an open set in the Grassmannian of projective lines in real or
complex projective n-space (Theorem 3).

Various other results on extending local collineations have appeared in the
literature. For example, E. Cartan [Ca] showed that a self-map of the
boundary of the 2-ball B, that takes any linear section in 0B, into a complex
line must be either projective-linear or anti-projective-linear. Radé (see [Ra])
observed that a collineation on any subset of a projective plane Pé (over any
field K) that contains three generic lines and a generic point extends to a
collineation of the entire projective plane. Mok and Yeung [MY, pp. 257-258]
showed that local holomorphic collineations are projective-linear; a genera-
lization of this result to biholomorphisms of complex manifolds preserving the
geodesics of a projective connection was recently given by Molzon and
Mortensen [MM, Theorem 9.1]. Some applications of Blaschke’s theory of
webs to algebraic geometry can be found in Chern-Griffiths [CG]. (For an
overview of the theory of webs, see [Go].) Also, the Poincaré-Tanaka theorem
was generalized by Alexander and Rudin to the case where f is a holomorphic
map from a domain Q C B, whose boundary contains an open subset of 0B,
onto a similar domain. Alexander [Al] showed that if f has a C* extension
to Q that maps Q N 0B, into dB,, then f extends to an automorphism
of B,; Rudin [Ru, Theorem 15.3.4] replaced Alexander’s hypothesis by a
much weaker condition that is satisfied, for example, when f has a continuous
extension to Q mapping QN 0B, into 0B,. (For discussions of related
results, see [Fo, pp. 325-326] and [Ru, §15.3].)
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