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SYNTHETIC PROJECTIVE GEOMETRY AND POINCARÉ'S THEOREM

ON AUTOMORPHISMS OF THE BALL

by Bernard Shiffman1)

1. Introduction

Let Bn denote the unit ball in Cn. In 1907, Poincaré [Po] showed that

any nonconstant holomorphic map / from a neighborhood U C C2 of a

point zo e dB2 into C2 which maps U n 8B2 into 8B2 must be the restriction

of an element of the Möbius group of automorphisms of B2. This result

was generalized to n variables by Tanaka [Ta] and was given new proofs

by Pelles [Pe], Alexander [Al], Rudin [Ru], and others, and recently by

Chern and Ji [CJ]. Chern and Ji considered the "Segre family" of 8Bn,

JdBn {(z, w) e Cn x Cn: "L]„xZjWj 1}

and showed that if (zo, w0) e JlBn and if /, g are nondegenerate
holomorphic maps from neighborhoods U, V of z0^o, respectively, into Cn

such that / x g maps JlBn n (U x V) into JlBn, then both / and g are

restrictions of elements of the Möbius group [CJ, Theorem 2]. The Poincaré-
Tanaka theorem follows easily from this result by considering the point
(Zo Zo) e • //Bn and taking g(w) f(w) (see §3). The method of Segre

families was also used in this context by S. Webster [We], who showed that
local holomorphic maps of nondegenerate real-algebraic hypersurfaces in C"
are algebraic.

In this paper, we show how the methods of Desarguesian projective
geometry provide an elementary proof of the Chern-Ji theorem. Since our
methods are "synthetic", we do not use any differential geometry, and apart
from some complex analysis used in the proof of the Poincaré-Tanaka
theorem, our proofs use only linear algebra and point-set topology and are self-
contained (except for the omission of the proofs of the fundamental theorems
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of Desargues and Pappus, which can be found in most texts on plane projective
geometry, e.g. [Co]). In fact we show (Theorem 6) that the Chern-Ji theorem
extends to the case of continuous f, g (where the conclusion holds either
for /, g or for their conjugates). Our method is based on the principle that
a continuous local self-map of real or complex projective space is projective-
linear or anti-projective-linear (in the complex case) if it maps each line in a

sufficiently large family j5f0 of lines into a line. For the case of the real

projective plane Pr, this principle was stated by Blaschke and his co-workers
in the 1920s (see [BB, p. 91]) when jzf0 is a "4-web"; i.e., jzf0 consists of four
pairwise transversal families of lines, each covering the domain of the map.
A complete proof of this fact was given in 1935 by W. Prenowitz [Pr]
(see also [Re]). We give a simple proof of this principle for the case

where =Sf0 is an open set in the Grassmannian of projective lines in real or
complex projective «-space (Theorem 3).

Various other results on extending local collineations have appeared in the

literature. For example, E. Cartan [Ca] showed that a self-map of the

boundary of the 2-ball B2 that takes any linear section in dB 2 into a complex
line must be either projective-linear or anti-projective-linear. Rado (see [Ra])
observed that a collineation on any subset of a projective plane J*2K (over any
field K) that contains three generic lines and a generic point extends to a

collineation of the entire projective plane. Mok and Yeung [MY, pp. 257-258]
showed that local holomorphic collineations are projective-linear; a
generalization of this result to biholomorphisms of complex manifolds preserving the

geodesies of a projective connection was recently given by Molzon and

Mortensen [MM, Theorem 9.1]. Some applications of Blaschke's theory of
webs to algebraic geometry can be found in Chern-Griffiths [CG]. (For an
overview of the theory of webs, see [Go].) Also, the Poincaré-Tanaka theorem

was generalized by Alexander and Rudin to the case where / is a holomorphic
map from a domain Q C Bn whose boundary contains an open subset of dB „
onto a similar domain. Alexander [Al] showed that if / has a C°° extension

to Q that maps Q n dB n into dBn, then / extends to an automorphism
of Bn\ Rudin [Ru, Theorem 15.3.4] replaced Alexander's hypothesis by a

much weaker condition that is satisfied, for example, when / has a continuous
extension to Q mapping Q n 95, into dBn. (For discussions of related

results, see [Fo, pp. 325-326] and [Ru, §15.3].)
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