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HG) = [HG/T)®H(D)]”.

Pil | 1®rf
HG) Y [HG/T)®HD]Y.
Since p¥ acts by k¢ on H9(T), (6.1) implies that H"(G),
= [H"-9(G/T) ® Hi(T)]", and (6.3) gives the dimension of the
latter space.

(6.6) This last interpretation of the bigrading shows that it is natural in the
following sense. Suppose f: K — G is a homomorphism between two compact
connected Lie groups. Since f commutes with the power maps P, on G
and K, the cohomology map f* sends H"(G), to H"(K),. Suppose for
example that K is a closed connected subgroup of G and f is the inclusion map.
Choose, as we may, a maximal torus 7 of G such that S:= 7T n Kis a maximal
torus of K. The restriction map H(G) = H(K) becomes, via (6.1), the map
[H(G/T)® H(T]" - [HK/S) ® H(S)] "« induced by restriction on
each factor, where Wy is the Weyl group of S in K.

(6.7) We close with the homology interpretation of (6.1), which says the
homology map v induced by v is surjective. It follows that the homology
of G is spanned by the cycles [w(X,, )] ={gtg ':¢Te X, ,te T,}.
Here w e W, X, is the Schubert cell (see (5.2)) and T; = ] .7 Ii, where
T'=T, x -+ X T;, with each T; = S'. Using the results in [BGG], one can
explicitly write down the action of W on H,(G/T) in terms of the Schubert
cell basis, and this leads, in principle, to the linear relations in Hy (G) satisfied
by the cycles [y (X, , T7)].
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