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H(G) ^ [H{G/T)(x) )]p*I I 1®pÎ

H(G)^ [//(G/T) (x)

Since p\ acts by k" on Hq{T), (6.1) implies that H"(G)q
^ [H- q (G/T) (x) Hq (F)]w, and (6.3) gives the dimension of the

latter space.

(6.6) This last interpretation of the bigrading shows that it is natural in the

following sense. Suppose f:K~* G is a homomorphism between two compact
connected Lie groups. Since / commutes with the power maps Pk on G

and K, the cohomology map /* sends Hn(G)q to Hn(K)q. Suppose for
example that Kis a closed connected subgroup of G and / is the inclusion map.
Choose, as we may, a maximal torus T oî G such that S : T n K is a maximal
torus of K. The restriction map H(G) - H(K) becomes, via (6.1), the map
[H(G/T) (x) H(T)\ w - [H(K/S) (x) H(S)] w* induced by restriction on
each factor, where WK is the Weyl group of S in K.

(6.7) We close with the homology interpretation of (6.1), which says the

homology map \j/* induced by \j/ is surjective. It follows that the homology
of G is spanned by the cycles 7"»] {gtg~1 : gT e Xw, t e 7V}.
Here w e W, Xw is the Schubert cell (see (5.2)) and Ti liieITi9 where
T Ti x ••• x F/, with each Tt — Sl. Using the results in [BGG], one can
explicitly write down the action of W on H*(G/T) in terms of the Schubert
cell basis, and this leads, in principle, to the linear relations in H* (G) satisfied
by the cycles [\jf(Xw, 7»].
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