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194 M. REEDER

where, as in (3.3), 9; is the derivation of & extending the functional
A= A(H;). We have a perfect pairing

9 ® ¥R

given by (D, f) = (Df)(0). Since the pairing is perfect, something in
degree v must pair nontrivially with IT. Since an irreducible W-module can
only pair nontrivially with its dual, and the self-dual character € occurs with
multiplicity one in &'V, afforded by 9, - -+ d,, we must have 8, --- 8,I1 # 0,
so c(IT) # 0.

Observe that 0, --- 0, is analogous to the fundamental class of G/ T,
and the pairing is essentially that between homology and cohomology. We
further remark that in fact all irreducible representations of W are defined over
the rational numbers, hence they are all self dual. This is a consequence of
Springer’s cohomological construction of W-modules [Sp].

Returning again to our task, we now inductively assume that
c: #k—> H?*(G/T) is injective for Kk <v, and let V = 27%-1 n kerc.
Note that V is preserved by W since ¢ is W-equivariant. The sign character
does not occur in k-1, so there is a positive root a whose corresponding
reflection s, does not act by — 7 on V. Decompose V' = V, @ V_ according
to the eigenspaces of s,. If V# 0 then V., # 0, so take f e V,. Now
c(of) =c(a)c(f) =0, and af is in degree k, so we must have af € . by
the induction hypothesis. Let A, ..., h|w| be a basis of 77 with Ay, ..., ki,
sq.-skew and the rest s, invariant. By Chevalley’s theorem (3.2), we can
write af = Y h;0; with o; W-invariant of positive degree. Since af is
s.-skew, the sum only goes up to r. Now for i < r, the polynomial /; must
vanish on ker o, hence can be written A; = ah; for some 4, € &. But then
f= E:=1hf0i € 7. Since f is supposed to be harmonic, we must have
f = 0. Hence c is injective on 27, and the proof of Borel’s theorem
is complete. [

6. THE COHOMOLOGY OF A LIE GROUP

We now have all the ingredients for our proof. Consider the map
v:G/T x T— G given by y(gT,t) = gtg—'. The Weyl group W acts
on 7 by conjugation and on G/ T by w - gT = gn-'T, where w = nT. Hence
W acts on H(G/TxXxT)=H(G/T)® H(T). Since y(gn-'T, wtw~1)
=y (gT, t), it follows that the induced map y* on cohomology maps H(G)
to [H(G/T) ® H(T)]". Though we prefer to have it in this form, the latter
group could be thought of as the cohomology of the quotient of G/7 X T
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by the action of W, and this quotient has a natural interpretation. As in the
introduction, let M be the set of pairs (g, T') where T’ is a maximal torus
in G containing g € G. The map G/T X w T — M sending (g7, )ymod (W)
to (gtg~!,gTg 1) is a diffeomorphism.

PROPOSITION (6.1). The map induced by \y on cohomology is an
isomorphism of graded rings

y*: H(G) =~ [H(G/T) ® H(D]" .

Proof. We compute the derivative (dy)r,»n at a point (g7, ¢)
€ G/T x T. For each point g7 € G/ T, we identify m with the tangent space
T,7(G/T) by letting X € m correspond to the initial tangent vector X,r of
the path s— g(expsX) T in G/T. Similarly, an element X € g (resp. H € t)
corresponds to a tangent vector X, € T,(G) (resp. H, € T,(T), for t € T).

Then

d
(AW er, (X1, 0) = — g(expsX)t(exp —sX)g 's=o0

d
= Zz—gtg*1 [exp sAd (gt~ 1) X] [exp — sAd(g) X1 |s=o
S

=t;yg4m+&wguﬂﬂrw—DX+Oth=o
S

= [Ad(g) (Ad (1= 1)) X g1 -
Similarly, we find, for H € t, that

(dV)r,:(0, H;) = [Ad(g)H]gtg—z .

Hence, under the identifications, (dy) 7,1 is the map
(Ad(t) - Dy @Il m@®tomDt=g.

Here the subscript m means we view Ad(¢~') — I as a map from m to
itself. Now G being compact and connected, we must have det Ad(¢) = 1, so

(Actually, m is always even-dimensional as we have seen, so there is no need
to reverse the subtraction).

We compute the degree of y by finding a regular value. Let 7, be a generic
element in 7, as in (2.3). Consider y ~!(¢)) = {(gT, t): gtg~! = to}. It turns
out that any two elements of 7 conjugate in G must be conjugate by an element
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of W. (In U(n), two diagonal matrices with the same set of eigenvalues must
be conjugate by a permutation matrix.) It follows easily then that

v l(t) = {(wT, wtgw=1):we W}.

We next show that y preserves orientation at each point in y ~!(%).
The eigenvalues of Ad(f,) in m are complex conjugate pairs z, z,
where |z|=1,z# 1. Hence |1-z]||1-2z|=2(0~-Re(z))>0, so
det (I — Ad(ty)), > O.

At this point we know the degree of y is degy = | W| # 0. By Poincaré
duality, any smooth map between compact manifolds of the same dimension
is injective on cohomology as soon as it has nonzero degree. Hence
v*: H(G) = [H(G/T) x H(T)]" is injective. We finish the proof of (6.1)
by showing that both sides have the same dimension.

For this we use, three times, the following basic principle. Let K be a
compact group (here K will be G, T or W). Let dk be the left invariant
Haar measure on K with total mass one. Let V' be a finite dimensional real
vector space, and p:K — GL(V) a continuous group homomorphism.
Then the space VX of vectors fixed by all p(k), k € K, has dimension

dim VK = s trace p(k)dk .
K
To compute this integral over G, we must exploit further the computation
of dy. Let wg, w7, ®g,r be the unique invariant (under left translations
by G, T, and G respectively) differential forms of top degree whose integral
over the respective manifold is one. The the pull-back formula for integration
gives

1
s Jog = 5 S ow(eT, t)’det(dW)(gT,t)|mG/T/\0)T>
G degV Jo/rxr ’

where the determinant is computed with respect to bases spanning parallel-
ograms of unit volume with respect to the appropriate forms. Taking f to be
invariant under conjugation by G, we arrive at the famous Weyl integration
formula:

1
fog=—1| f(t)det(I - Ad(1)) o1 .
L e |W»§T © 7

Expand the function ¢+ det(/ — Ad(t)), in a sum of characters of
T:noYo+ niY1+ - + ngxr. Here 7y, is the trivial character of 7,
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appearing n, times, and for i > 0 each y;is a nontrivial character appearing
n, times. Taking for f the constant function equal to one, and applying the
basic principle of invariants to 7, we find ny = ] W[.

Taking for f the function f(g) = det(I + Ad(g)), i.e., the trace of Ad(g)
acting on Ag, we find, using the Cartan-de Rham isomorphism (4.3), that

dim H(G) = dim(Ag)¢ = 5 det (I + Ad(g)®¢
G

— LI s det (I + Ad (1)) det(I — Ad(t))n @7

| W

2dim T

= det(I — Ad(t%)) o1 .
W] S '

Now the squaring map on 7 is surjective, so the square of a nontrivial character
of T is still nontrivial. Hence the trivial character again appears with
multiplicity | W | in the expansion of det(/ — Ad(#?)),. This multiplicity is
the value of the integral, so dim H(G) = 24m7 = 2/,

On the other hand, we saw in (5.3) that the trace of w € W acting on
H(G/T) is |W|if w = 1, zero otherwise. Applying the invariance formula
one more time, we find that dim [H(G/T)® H(T)]" =2/ as well,
completing the proof of (6.1). [

We now have the main result

(6.2) THEOREM. The cohomology ring H(G) with real coefficients is

a bigraded exterior algebra with generators in bi-degrees (2m;, 1), for
1 <igl.

Proof. By (6.1) and (5.4), we have
H(G) = [H(G/T)® H(T)]" = [70) ® A1V,
and by (3.8), the latter space is an exterior algebra with generators in

degrees 2m;, 1), for 1 <i<l. [

Moreover, from the multiplicity formula (3.8), the dimensions of the
bi-graded pieces are given in terms of the exponents as follows
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(6.3) COROLLARY. For each q >0, we have

dim G
Y dim[H"-9(G/T) ® Hi(T)]"ur = uds,(u>m, ..., u?m) .
n=20
(6.4) We give two interpretations of the bigrading. First, we follow [L] and
consider the spectral sequence of the fibration G — G/ T, which has F,-term

E% = H?(G/T) ® He(T),

and converges to H(G). This spectral sequence does not degenerate at E,,
but it has a spectral subsequence which does degenerate, and still converges
to H(G).

To see this we again consider the Weyl group action. More precisely,
N acts by automorphisms of the fibration G — G/ 7T, which in turn induce
automorphisms of each term in the spectral sequence, commuting with the
differentials. On E%? = HP(G/T)® HY(T), the action of N factors
through W and is the same as that considered above. Thus we have
representations of W on the spaces E57, hence on each E?? for r > 2.

For each p,q,r we decompose E?? = (E?)" @ (E?Y)y, where the
subscript W indicates a W-stable complement to the invariants. Each of the
latter two spaces is a spectral subsequence, and since EZ? is a subquotient
of HP+49(G) and N acts trivially on H(G) (because G is connected), we must
have (E??)y = 0. On the other hand, (E??)" is a subquotient of (E5?)"
= [HP(G/T) ® H4(T)]", so we have

2! =dimH(G) = ), dim(E??)" < ). dim (E5?)"

psq p.q

=) dim[H(G/T) ® A]%" =2/,
q

It follows that dim (EZ?)" = dim (E%9)" for all pg, so the spectral
subsequence of W-invariants degenerates at (£,)", and (6.1) is proved again.

(6.5) The significance of the bigrading on H(G) can be seen in yet another
way, inspired by [GHV]. We consider, for a fixed integer k # 1, the
k™-power maps x — x*, denoted p, and P, on T and G, respectively.
It is shown in [GHV] that the Lefschetz number of P, equals that of p,,
namely (1 — k)!. Let H"(G), be the k9-eigenspace of P} acting on H"(G).
It is further shown in [GHV] that },dim H"(G), = (). We can refine
this by computing each dim H”(G), separately. Consider the commutative
diagram
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‘U*

HG) = [HG/T)®H(D)]”.

Pil | 1®rf
HG) Y [HG/T)®HD]Y.
Since p¥ acts by k¢ on H9(T), (6.1) implies that H"(G),
= [H"-9(G/T) ® Hi(T)]", and (6.3) gives the dimension of the
latter space.

(6.6) This last interpretation of the bigrading shows that it is natural in the
following sense. Suppose f: K — G is a homomorphism between two compact
connected Lie groups. Since f commutes with the power maps P, on G
and K, the cohomology map f* sends H"(G), to H"(K),. Suppose for
example that K is a closed connected subgroup of G and f is the inclusion map.
Choose, as we may, a maximal torus 7 of G such that S:= 7T n Kis a maximal
torus of K. The restriction map H(G) = H(K) becomes, via (6.1), the map
[H(G/T)® H(T]" - [HK/S) ® H(S)] "« induced by restriction on
each factor, where Wy is the Weyl group of S in K.

(6.7) We close with the homology interpretation of (6.1), which says the
homology map v induced by v is surjective. It follows that the homology
of G is spanned by the cycles [w(X,, )] ={gtg ':¢Te X, ,te T,}.
Here w e W, X, is the Schubert cell (see (5.2)) and T; = ] .7 Ii, where
T'=T, x -+ X T;, with each T; = S'. Using the results in [BGG], one can
explicitly write down the action of W on H,(G/T) in terms of the Schubert
cell basis, and this leads, in principle, to the linear relations in Hy (G) satisfied
by the cycles [y (X, , T7)].
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