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where, as in (3.3), 8/ is the derivation of Sf extending the functional
X(Hi). We have a perfect pairing

@ ® R

given by 0). Since the pairing is perfect, something in
degree v must pair nontrivially with n. Since an irreducible W-module can
only pair nontrivially with its dual, and the self-dual character s occurs with
multiplicity one in ^v, afforded by 9i • • • 8V, we must have 8j • • • 8V11 =£ 0,

so c(U) 0.

Observe that 81 • • • 8 v is analogous to the fundamental class of G/T,
and the pairing is essentially that between homology and cohomology. We

further remark that in fact all irreducible representations of W are defined over
the rational numbers, hence they are all self dual. This is a consequence of
Springer's cohomological construction of IL-modules [Sp].

Returning again to our task, we now inductively assume that

c: 99 k - Hlk(G/T) is injective for k^v, and let V 3fk~lnkerc.
Note that V is preserved by W since c is W-equivariant. The sign character
does not occur in 99k~x, so there is a positive root a whose corresponding
reflection sa does not act by - I on V. Decompose V V+ © K_ according
to the eigenspaces of sa. If V 0 then V+ 0, so take f e V+ Now

c(af) c(a)c(f) 0, and a/ is in degree k, so we must have af e by
the induction hypothesis. Let hi, ...,h\w\ be a basis of with hx,...,hr
^a-skew and the rest sa invariant. By Chevalley's theorem (3.2), we can

write af £/*/0/ with O/ ^-invariant of positive degree. Since af is

Sa-skew, the sum only goes up to r. Now for i ^ r, the polynomial hi must
vanish on ker a, hence can be written ht ah\ for some h\ e 9*. But then

f ï,Uihi°i e Since / is supposed to be harmonic, we must have

/ 0. Hence c is injective on and the proof of Borel's theorem
is complete.

6. The cohomology of a Lie group

We now have all the ingredients for our proof. Consider the map

\jf:G/Tx T-+G given by y(gT, t) gtg~1. The Weyl group W acts

on Tby conjugation and on G/T by w - gT gn~lT, where w nT. Hence

W acts on H(G/Tx T) H {G/T) (x) H{T). Since \|f{gn~'T,wtw~l)
\|/(g77, t), it follows that the induced map \|/* on cohomology maps H(G)

to [H(G/T) (x) H(T)\ w. Though we prefer to have it in this form, the latter

group could be thought of as the cohomology of the quotient of G/T x T
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by the action of W, and this quotient has a natural interpretation. As in the

introduction, let M be the set of pairs (g, T') where Tr is a maximal torus

in G containing g e G. The map G/T xwT~+ M sending (gT, t)moà.(W)
to (gtg'1, gTg~{) is a diffeomorphism.

Proposition (6.1). The map induced by \|/ on cohomology is an

isomorphism of graded rings

\y*:H(G)^ [H(G/T) ® H(T)\W

Proof. We compute the derivative (d\\f){gT,t) at a point (gT,t)
e G/T x T. For each point gT e G/T, we identify m with the tangent space

T*t (G/T) by letting X em correspond to the initial tangent vector XgT of
the path s g(expsX) T in G/T. Similarly, an element X e g (resp. H e t)
corresponds to a tangent vector Xg e Tg(G) (resp. Ht e Tt(T), for t e T).

Then

(d\v)gr,,(XgT,0) 4-g(expsX)?(exp -sX)#-1 |s 0

ds

d
— gtg~l [fwpsAd(gt~l)X] [exp -sAd(g)X] |J 0

ds

gtg~1 [X + sAd(g) (Adit'1) - \)X+ 0(s2)] |, 0
ds

[Ad(g)(Ad(t-1))X]gtg-1

Similarly, we find, for if e t, that

(tfyW(0 ,Ht)

Hence, under the identifications, (c/v|/)(?7-,() is the map

(/4rf(/-')- /)„©/: in ©t-m©t 9

Here the subscript m means we view Ad(t~x) as a map from m to
itself. Now G being compact and connected, we must have del Ad(t) 1, so

det(ûty)(ïr7-,o d&i1 ~ Ad(t))m

(Actually, m is always even-dimensional as we have seen, so there is no need
to reverse the subtraction).

We compute the degree of v|/ by finding a regular value. Let t0 be a generic
element in T, as in (2.3). Consider vp ~1 (f0) {(gT, t): gtg~l t()}. It turns
out that any two elements of Tconjugate in G must be conjugate by an element
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of W. (In U(n), two diagonal matrices with the same set of eigenvalues must
be conjugate by a permutation matrix.) It follows easily then that

V_1(^o) {(wT, wt0w~l): w e Wj

We next show that \j/ preserves orientation at each point in
The eigenvalues of Ad(t0) in m are complex conjugate pairs z, z,
where | z | «=• I, z =£ 1. Hence |l - z 11 1 — z \ 2{\ — Re (z)) > 0, so

det (I - Ad> 0.

At this point we know the degree of \j/ is deg \j/ — \ W\ =£ 0. By Poincaré

duality, any smooth map between compact manifolds of the same dimension
is injective on cohomology as soon as it has nonzero degree. Hence

\|/*:if(G) [H(G/T) x H(T)\W is injective. We finish the proof of (6.1)

by showing that both sides have the same dimension.
For this we use, three times, the following basic principle. Let K be a

compact group (here K will be G, T or W). Let dk be the left invariant
Haar measure on K with total mass one. Let F be a finite dimensional real

vector space, and p:K^GL(V) a continuous group homomorphism.
Then the space VK of vectors fixed by all p (£), k e K, has dimension

dim VK I trace p (k)dk

To compute this integral over G, we must exploit further the computation
of d\\f. Let coG, cor, coG/r be the unique invariant (under left translations

by G, T, and G respectively) differential forms of top degree whose integral
over the respective manifold is one. The the pull-back formula for integration
gives

Î/CÛG —/ O w(gT,t)I det(c?\|/)(?r>0 I cûg/7-a ©7-,
g deg \|/ J g/7"X t

where the determinant is computed with respect to bases spanning parallelograms

of unit volume with respect to the appropriate forms. Taking / to be

invariant under conjugation by G, we arrive at the famous Weyl integration
formula:

f®0n^Ti I f(t)det©r.
g I^IJr

Expand the function det (/ - Ad(t))m in a sum of characters of
7k^oXo + ^i%i+ *•' + nk%k- Here %0 is the trivial character of T,
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appearing no times, and for i > 0 each X/ is a nontrivial character appearing

Yi\ times. Taking for / the constant function equal to one, and applying the

basic principle of invariants to T, we find n0 \W\.
Taking for / the function f(g) det(/ + Ad(g)), i.e., the trace of

acting on Ag, we find, using the Cartan-de Rham isomorphism (4.3), that

dim//(G) dim (Ag)G j

—b I det(/+ A
1 ^1 J T

2 dim T f
"7 r I det(7- Ad{t2))^T

I w\ Jt

Now the squaring map on Tis surjective, so the square of a nontrivial character

of T is still nontrivial. Hence the trivial character again appears with
multiplicity | W \ in the expansion of det (/ - Ad{t2))m. This multiplicity is

the value of the integral, so dim//(G) 2dimT 2l.
On the other hand, we saw in (5.3) that the trace of w e W acting on

H(G/T) is I WI if w 1, zero otherwise. Applying the invariance formula
one more time, we find that dim [H(G/T) 0 H(T)\w 2l as well,
completing the proof of (6.1).

We now have the main result

(6.2) Theorem. The cohomology ring H(G) with real coefficients is
a bigraded exterior algebra with generators in bi-degrees (2mi9 1), for
1 ^ ^

Proof. By (6.1) and (5.4), we have

H(G) - [H(G/T) 0 H(T)\ w — [^(2) fx) A]w f

and by (3.8), the latter space is an exterior algebra with generators in
degrees (2mi9 1), for 1 ^ / ^ /.

Moreover, from the multiplicity formula (3.8), the dimensions of the
bi-graded pieces are given in terms of the exponents as follows



198 M. REEDER

(6.3) Corollary. For each q ^ 0, we have

dim G

£ dim [H"-i (G/T)®H"{T)]wun
n 0

(6.4) We give two interpretations of the bigrading. First, we follow [L] and

consider the spectral sequence of the fibration G -> G/T, which has E2-term

Ep2q HP(G/T) 0 Hq (T)

and converges to H(G). This spectral sequence does not degenerate at E2,
but it has a spectral subsequence which does degenerate, and still converges
to H(G).

To see this we again consider the Weyl group action. More precisely,

N acts by automorphisms of the fibration G G/T, which in turn induce

automorphisms of each term in the spectral sequence, commuting with the

differentials. On Epq Hp (G/T) 0 Hq (J), the action of TV factors

through W and is the same as that considered above. Thus we have

representations of W on the spaces Ep2q, hence on each Eprq for r ^ 2.

For each p,q,r we decompose Epq (Epq)w © {Epq) w, where the

subscript W indicates a IF-stable complement to the invariants. Each of the

latter two spaces is a spectral subsequence, and since Ep^ is a subquotient
of Hp + q{G) and TV acts trivially on H{G) (because G is connected), we must
have (.EPJ)W 0. On the other hand, (.EPJ)W is a subquotient of (.Ep2q)w

[Hp (G/T) 0 Hq(T)\ w, so we have

2' dim H(G)X dimCED^sï £ dim (Ep2q)w
P> Q P,Q

E dim [H(G/T) ® A«] w

Q

It follows that dim (EPJ)w dim (Epq)w for all pq, so the spectral

subsequence of IF-invariants degenerates at (E2)w, and (6.1) is proved again.

(6.5) The significance of the bigrading on H(G) can be seen in yet another

way, inspired by [GHV]. We consider, for a fixed integer k 1, the

A:th-power maps x^xk, denoted pk and Pk, on T and G, respectively.

It is shown in [GHV] that the Lefschetz number of Pk equals that of pk,
namely (1 - k)1. Let Hn(G)q be the kq-tigenspace of Pf acting on Hn(G).
It is further shown in [GHV] that 10 dim Hn(G)q= We can refine
this by computing each dim Hn(G)q separately. Consider the commutative

diagram
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H(G) ^ [H{G/T)(x) )]p*I I 1®pÎ

H(G)^ [//(G/T) (x)

Since p\ acts by k" on Hq{T), (6.1) implies that H"(G)q
^ [H- q (G/T) (x) Hq (F)]w, and (6.3) gives the dimension of the

latter space.

(6.6) This last interpretation of the bigrading shows that it is natural in the

following sense. Suppose f:K~* G is a homomorphism between two compact
connected Lie groups. Since / commutes with the power maps Pk on G

and K, the cohomology map /* sends Hn(G)q to Hn(K)q. Suppose for
example that Kis a closed connected subgroup of G and / is the inclusion map.
Choose, as we may, a maximal torus T oî G such that S : T n K is a maximal
torus of K. The restriction map H(G) - H(K) becomes, via (6.1), the map
[H(G/T) (x) H(T)\ w - [H(K/S) (x) H(S)] w* induced by restriction on
each factor, where WK is the Weyl group of S in K.

(6.7) We close with the homology interpretation of (6.1), which says the

homology map \j/* induced by \j/ is surjective. It follows that the homology
of G is spanned by the cycles 7"»] {gtg~1 : gT e Xw, t e 7V}.
Here w e W, Xw is the Schubert cell (see (5.2)) and Ti liieITi9 where
T Ti x ••• x F/, with each Tt — Sl. Using the results in [BGG], one can
explicitly write down the action of W on H*(G/T) in terms of the Schubert
cell basis, and this leads, in principle, to the linear relations in H* (G) satisfied
by the cycles [\jf(Xw, 7»].
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