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190 M. REEDER

(4.2) Assume that K is connected. Since any homomorphism from K to the
multiplicative real numbers must be trivial, the determinant is a nonzero
element of the one dimensional space (A" n*)X, where n = dim M. It follows
that M is orientable, and any G-invariant n-form on M will have nonzero
integral over M as soon as it does not vanish at one point.

(4.3) In the case M = G we have the additional symmetry of left and right
multiplication by G X G, and every cohomology class contains a bi-invariant
representive. The value at e of a bi-invariant form is Ad(G) invariant. Taking
the derivative of the condition for ® € A”g¢* to be Ad(G)-invariant, we find
(product rule) that o ([X, X1, X2, ..., Xp) + - + o(Xy, .., [X, X,]) =0
for all X, X,,...,X, € g. It is then not hard to show that this condition
implies that dw = 0. Hence all bi-invariant forms are closed. Since &
commutes with Ad, it follows that the de Rham cohomology of G is computed
by the complex (Ag*)%, with zero differential. That is, H(G) = (Ag*)°, as
graded rings.

5. THE COHOMOLOGY OF FLAG MANIFOLDS

The Bruhat Decomposition is a cell decomposition of the flag manifold
G/ T into even dimensional cells indexed by elements of the Weyl group W.
It generalizes the decomposition of the two-sphere (flag manifold of SU(2))
into a point and an open disk. The existence of such a decomposition implies
that there are no boundary maps in cellular homology, and the cohomology
of H(G/T) is nonzero only in even degrees.

It is customary to explain the The Bruhat decomposition in terms of
complex groups. For example the flag manifold for U(n) is in fact a
homogeneous space for GL,(C), and the cells can be described as the orbits
of certain subgroups of the group of upper triangular complex matrices, which
do not live in U(n). We shall, however, describe the cell decomposition of G/ T
purely in terms of the compact group G, using Morse theory. It was Bott, later
with Samelson, who first applied Morse theory to the loop space of G from
which, combined with results of Borel and Leray, they deduced results on the
topology of G and G/T. See [BT] for a brief introduction to Morse theory.

(5.1) We need to find a “Morse function” f on G/T. This is a smooth real
valued function whose Hessian (matrix of second partial derivatives taken in
local coordinates) at each critical point has nonzero determinant. How shall
we find one? For the unit sphere in R? centered at (0, 0,0), we can take
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f(x,y,2) = z, and the critical points are the north and south poles, where
0
-1
gradient of f emanating from the south pole form a 2-cell, and the north
pole is a zero-cell. We can also write f using the dot product on R3
as f(p) = p - n, where n is the position vector of the north pole. Viewing R3
as the Lie algebra 8u(2), this tells us what to do in general.

As analogue of the north pole, we take H, € t to be the regular element
defining the positive roots, as in (2.3). Since the Ad(G)-centralizer of H,
is exactly 7, we may view G/T C g as the Ad(G)-orbit of H, (analogous
to S2 C R?), and we define a function f:G/T — R by

f(&T) = (Ad(g)H,, Hy) .

For X € g, let X be the vector field on G/ T given, for a smooth function ¢
on G/T, by

- 1 0 ,
the Hessian is ( 1 ) and (O l) , respectively. The flow lines of the
0

_ d
Xo(gT) = gd)((exst)gT) |0 .

Then a short computation, using the ad-invariance of the inner product,
shows that

Xf(gT) = (Ad(g)H,, [H,, X]) .

Since the centralizer of H, in ¢ is exactly t, the image of ad(H,) is all
of m. So gT is a critical point of f if and only if (Ad(G)H,,m) = 0,
forcing Ad(g) Hy € t. It then follows that Ad(g)H, = Ad(w)H, for some
w e W. So the critical points of f are the w7, for w e W.

Let X, X3, ..., X,, be the orthonormal basis of m from (2.3). For each
w € W, the differential of the projection n: G — G/T maps Ad(w)m = m
isomorphically onto T,7(G/T), so we can use the X,’s to compute the
Hessian of f at each point wT. Let h;;(w) be the ij entry in the Hessian
matrix. Another short computation gives |

hiy(w) = X, X, f(WT) = ([X;, Ad(w) Hol, [Ho, X1 .
Recalling the bracket relations in (2.3), we find that

hii(w) = — 0li(z‘ld(W)Ho)Oli(Ho) ,

and h;;(w) = 0 if i # j. The regularity of H, implies that of Ad(w)H,,
so the Hessian is nonsingular. It follows that the index of the critical
point wT, by definition the number of negative eigenvalues of the Hessian,
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i1s twice the number m(w) of positive roots o such that w-'a is again
positive. Now by the main theorem of Morse theory, the Poincaré polynomial
of G/Tis } . pu?"™ . In particular, H°4(G/T) = 0 and dim H**"(G/T)
= dimH(G/T) =y (G/T) = | W|.

(5.2) The Schubert cell X,, in the Bruhat decomposition is spanned by those
flow lines of the gradient of f which emanate from w7. The dimension of this
cell then equals twice the number of positive eigenvalues of the Hessian
at w7, which is the number of positive roots made negative by w.

(5.3) Recalling that W acts on G/ T, we use Leray’s argument to determine
the structure of the W-module H(G/T), ignoring the grading for now. The
element w € W acts by w - (gT) = gw~'T of Won G/T. Since there is no
cohomology in odd degrees, the Lefschetz number of w equals its trace
on H(G/T). If w # 1 there are no fixed points so the Lefschetz number is
zero. If w = 1 we are computing the Euler characteristic which we now know
is| W|. Hence the trace of any w € W acting on H(G/ T) is that of the regular
representation, so H(G/T) = R[W] (the group ring of W) as W-modules.

The theorem of Borel is a refinement of this, and describes the W-module
structure of H(G/T) in each degree. Recall the graded ring 2 of polynomial
functions on t and its ideal .# generated by the W-invariant polynomials of
positive degree. Our object is to prove the following

(5.4) THEOREM (Borel). There is a degree-doubling W-equivariant ring

isomorphism
c: /7 > H(G/T) .

Consequently, 2, = H(G/T), where 2y is 27 with the grading
degrees doubled.

Proof. We will describe the cohomology ring of G/T in terms
of G-invariant differential forms. For each A € t*, extended to a functional
on all of g by making it zero on m, define an Ad(T)-invariant two-form w,,
on m by

0, (X, Y) =A(X, Y]) .

As in (4.1), this corresponds to a left-invariant form w, on G/T.
Though it is not needed here, one can show that if A is the differential of
a character y,: 7 — S, then 4—17;(% represents the first Chern class of the
corresponding complex line bundle G X + C, where T acts on C via 7y, .
Returning to the proof, note that for w € W, acting on t* by wi(H)
= A(Ad(w)~'H), and on the space of differential forms Q(G/T) via its

action on G/T, we have w*w, = w,,. Moreover, the Jacobi identity says
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that 8w, = 0, and we let c(X) = [@,] € H2(G/T) be the cohomology class
of @, . This extends to a degree-doubling ring homomorphism

c: > H(G/T)

which also preserves the W-action on both sides. Since H(G/ T') is the regular
representation of W, its W-invariants are one-dimensional and therefore can
occur only in H°(G/T). By the W-equivariance, it follows that the kernel
of ¢ contains the ideal .# € & generated by W-invariant polynomials of
positive degree. Borel’s theorem asserts that .# is exactly the kernel of c.

Since & = 77 @® £ (see (3.4)), we shall prove the theorem by showing
that the restriction of ¢ to 77 is injective. We start in the top dimension, where
our task is to show that c(IT) (recall from (3.5) that IT is the primordial
harmonic polynomial) is nonzero in H?Y(G/T). One way is to use the Chern
class interpretation to show that ¢ (IT) is a nonzero multiple of the Euler class
of G/ T, whose integral over G/ Tis x(G/T) = | W| # 0. However, we shall
be more pedestrian about it, and evaluate ¢(IT) on a basis on m (see (4.2)).

Recall that for each positive root a;, we have elements X;, X;,, in m,
with bracket relations [X;, X;,,] =H;et,[X;,X;]em if j#i+ v.
The set {X;:1<i<2v} is a basis of m. Write ®; for ®,,, so ¢(I)
= [0, A" A®,]. We compute

WA A('OV(XlaX1+V'-~aXV9X2V)

1
= Z sgn(c)m, (Xs1)s Xoa+v) " 0y (Xow) s Xs2v)
2v)! ses,,
1
= E Sgn(c)al([X0(1)9X0(1+v)]) av([Xc(v)a Xc(Zv)]) .
2Vv)! ses,,

Now a; ([Xs¢y, Xoi+w]) = 0 unless [Xo0), Xoisv] €1, so the ot term is
nonzero only if ¢ permutes the pairs ©n; = {{,7 + v} and possibly switches
some of the members of each pair. Moreover, sgn (o) equals minus one to the
number of switches, so we get

QA AOVX, Xy, X, XDy)

2v
= Y GESV o ([XG(I)’XV+0(1)]) oy (X sy s Xviosw])
2v
N 2v)! cg:s 01 (Hom) - 0y (How)
2v
61 “ e avn ,

T 2!
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where, as in (3.3), 9; is the derivation of & extending the functional
A= A(H;). We have a perfect pairing

9 ® ¥R

given by (D, f) = (Df)(0). Since the pairing is perfect, something in
degree v must pair nontrivially with IT. Since an irreducible W-module can
only pair nontrivially with its dual, and the self-dual character € occurs with
multiplicity one in &'V, afforded by 9, - -+ d,, we must have 8, --- 8,I1 # 0,
so c(IT) # 0.

Observe that 0, --- 0, is analogous to the fundamental class of G/ T,
and the pairing is essentially that between homology and cohomology. We
further remark that in fact all irreducible representations of W are defined over
the rational numbers, hence they are all self dual. This is a consequence of
Springer’s cohomological construction of W-modules [Sp].

Returning again to our task, we now inductively assume that
c: #k—> H?*(G/T) is injective for Kk <v, and let V = 27%-1 n kerc.
Note that V is preserved by W since ¢ is W-equivariant. The sign character
does not occur in k-1, so there is a positive root a whose corresponding
reflection s, does not act by — 7 on V. Decompose V' = V, @ V_ according
to the eigenspaces of s,. If V# 0 then V., # 0, so take f e V,. Now
c(of) =c(a)c(f) =0, and af is in degree k, so we must have af € . by
the induction hypothesis. Let A, ..., h|w| be a basis of 77 with Ay, ..., ki,
sq.-skew and the rest s, invariant. By Chevalley’s theorem (3.2), we can
write af = Y h;0; with o; W-invariant of positive degree. Since af is
s.-skew, the sum only goes up to r. Now for i < r, the polynomial /; must
vanish on ker o, hence can be written A; = ah; for some 4, € &. But then
f= E:=1hf0i € 7. Since f is supposed to be harmonic, we must have
f = 0. Hence c is injective on 27, and the proof of Borel’s theorem
is complete. [

6. THE COHOMOLOGY OF A LIE GROUP

We now have all the ingredients for our proof. Consider the map
v:G/T x T— G given by y(gT,t) = gtg—'. The Weyl group W acts
on 7 by conjugation and on G/ T by w - gT = gn-'T, where w = nT. Hence
W acts on H(G/TxXxT)=H(G/T)® H(T). Since y(gn-'T, wtw~1)
=y (gT, t), it follows that the induced map y* on cohomology maps H(G)
to [H(G/T) ® H(T)]". Though we prefer to have it in this form, the latter
group could be thought of as the cohomology of the quotient of G/7 X T
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