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184 M. REEDER

element H, € t. We may and shall choose the positive roots so that they take
strictly positive values on H,. The action of W on t is generated by
reflections about the kernels of the positive roots.

Since each m; is also preserved by ad(t), we can choose an orthonormal
basis {X;, X,.;} of m; such that, for H € t, the matrix of ad(H) |,, with

respect to this basis is
0 o(H)
—o(H) 0 )

Note that the ad-invariance of the inner product ( , ) implies, for all
I1<igv,alll1 <j<2vand all H €t that

(H, [X;, X;1) = ([H, X;], X;) = —o;(H)(Xirv, X;) .

By orthonormality, this last pairing can only be nontrivial if j =i + v.
Hence if j#i+ v, we have [X;, X;] € m. The same thing happens if
i>vandj#1i-—v.

On the other hand, for 1<i<v, set H;=[X;,X,+:;]. This is
Ad(T)-invariant, so H; € t, and ad(H;)m; C m,;. It follows that the span
of X;,X,;,v, H;is a Lie subalgebra ¢; of g. It is always isomorphic to du(2).

3. INVARIANT THEORY

All proofs missing from this section may be found in the textbook [H],
the expository article [F], or [BK].

(3.1) Let

/

F=@ ¥ and A= @D (=dimt)
p=0

g=0

be the symmetric and exterior algebras on t*, respectively. The adjoint action
of W on t induces representations of W on & and A by degree-preserving
algebra automorphisms. For example, the action of W on A’is multiplication

by the sign character

e:W—-{+£1} given by ¢&(w)=detAd(w);.

Note that €(w) is the parity of the number of reflections needed to express
Ad(w);.
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We are interested in W-invariant polynomials, and more generally,
W-invariant differential forms with polynomial coefficients. For the unitary
group U(n), the ring of invariants &% is generated by the elementary
symmetric polynomials s, ..., s, in variables xi, ..., X, defined as

Sg(X1s ey Xp) = Y Xi ottt Xy
1<ip< - <ig<n
The elementary symmetric polynomials are algebraically independent, and
their number equals the dimension n of a maximal torus of U(n). In general,
we have

(3.2) THEOREM (Chevalley). The ring % has algebraically inde-
pendent homogeneous generators F,,...,F;, hence is a polynomial ring

gW: R[Fl, ...,F/] .

We number these generators so that degF; < degF, < -+ < degF.
(Note to experts: Since we are not assuming G to be semisimple, some of
the Fs could have degree one.) The exponents m;, <m, < - < my
of W acting on t are defined by the relations m; + 1 = deg F;. It is known
that my + -+ + m;=v,and (1 + m;) --- (1 +m;) = | W|.

Every compact connected Lie group is, up to finite covering, the product
of a central torus with a direct product of classical groups SU(n), SO (n),

Sp(n), and exceptional groups G,, F,, E¢, E;, Eg. For these groups the m,’s
are given as follows:

SU(n): 1,2,...,n — 1. SOoQ2n): 1,3,...,2n—-3,n— 1.
SO2n +1) and Sp(n): 1,3,...,2n — 1.
Gy: 1,5. F,: 1,5,7,11.

E¢: 1,4,5,7,8, 11.
E,;: 1,5,7,9,11, 13, 17.
Eg: 1,7,11,13,17, 19, 23, 29.

These numbers are easy to verify for the classical groups and G, (whose
maximal torus T is that of SU(3) with Weyl group S extended by the inverse
map on 7T'), using elementary symmetric polynomials as above. Computing the
exponents for the other exceptional groups is more difficult. See [C].

(3.3) The W-module structure of the whole polynomial ring & is given as
follows. Let & be the ring of constant coefficient differential operators
on /. We can think of & as the symmetric algebra S(t), where H et
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corresponds to the derivation of & extending the functional on t* given by
evaluation at H. Then W acts naturally on & and one defines the ‘“harmonic
polynomials” in % to be those annihilated by the W-invariant differential
operators:

K ={fe S gVf=0}.

Let 277 = 2 n 7. Then 27 = @, P, since a differential operator
is W-invariant only if each of its homogeneous components is so. The action
of Won & leaves &7 invariant.

Let .7 be the ideal in & generated by the elements of &% of positive
degree. It is known (see [H, p. 360] that &= 27 @® .7, and the multiplication
map is a linear isomorphism Q@ &% = &. The former implies that
&/ F and 2% are isomorphic W-modules. They are in fact isomorphic to
the regular representation of W, as we shall see in (5.4). The isomorphism
o Q FW = & implies the identity

/
Y dimazZrer = ] L+ e+ 2+ - +17m),
i=1

p=0
which in turn shows that dim 2#°vV =1, and 277 = 0 for p > v.

(3.4) Let V be any irreducible W-module. Suppose V is a constituent
of &%, and not a constituent of &7¢, for any ¢ < b. We call b the birthday
of V. Then the V-sotypic component of % must consist of harmonic
polynomials, for otherwise, a W-invariant differential operator of positive
degree would intertwine V with a space of polynomials of lower degree.

For example, the primordial harmonic polynomial is

M= [[ ae v,
ceEAT
where we recall that A* is the set of positive roots. For U(n), Il is the
van der Monde determinant [, _ iXi— X, which transforms under the
symmetric group S, by the sign character. In general, I transforms by the
sign character € of W, and any other polynomial transforming by € must vanish
on all root hyperplanes, hence be divisible by Il. Therefore IT is harmonic,
v is the birthday of € and (1.4) shows that 577V is spanned by II.

We say that IT is primordial because 2#° is spanned by the partial
derivatives of IT (see [S]). This turns out to be the algebraic analogue of
Poincaré duality for G/ T.

As we have seen, the sign character is also afforded by A’. In general, if
g is simple then each exterior power A¢?is an irreducible W-module. We shall
determine the birthday of each A¢ shortly.




ON THE COHOMOLOGY OF COMPACT LIE GROUPS 187

(3.5) Now consider the algebra & ® A of differential forms on t with
polynomial coefficients. Let Fy, ..., F; be homogeneous generators of LW as
in (3.2). Extending that result, Solomon [Sol] has described the W-invariants
in & ® A. Because it seems not so well known but is important here, we give
a proof, taken from [H].

(3.6) THEOREM (Solomon). The space (¥ ® A)Y of W-invariants
in QN isa free Y-module with basis

{dF,l/\/\dqu1<11< <lq<1}

Proof. It is a general fact about polynomials that the algebraic
independence of F, ..., F;is equivalent to the form dF A - -+ AdF, not being
identically zero. Let x;, ..., x; be a basis of t*. Then

dF A ANdF, = Jdx; -+ dx,,

where the Jacobian J is a polynomial of degree m, + --- + m,; = v. The
left side is W-invariant and dx; A - -- Adx; affords the sign character €.
Hence J must also afford € and, because of its degree, J must be a nonzero
multiple of the primordial harmonic polynomial IT. Thus

dFiAn - ANdF, = clldx A - AdXxy,

for some nonzero real number c.

For a sequence [ =i, < -+ <i,, let I' be the increasing sequence
of all integers in {1,...,/} —{iy,...,ig}. Set dF;=dFin- AdF;,
for any sequence I. Let k be the quotient field of &. If f; € k are such
that Y, f;dF; = 0 then multiplying by dF;  kills all terms but I, leaving
+ cf;Ildx, ---dx; =0, so f;=0. Counting dimensions, we find that
the dF; are a k-basis of £k ® A, and are in particular linearly independent
over ZW. Now suppose ® € ¥ &® A is W-invariant. We can express
® = ) ,g/dF; for some g; € k. Multiplying by dF; again, we have

(D/\dF]f = = Cg]HdX1 dX[ € [y® A]W :
This forces g; to be not only W-invariant, but also polynomial. []
For me Y@ A, let o' € 7.7 ® A be obtained by reducing the
coefficients of @ modulo .#. This induces an exact sequence
0 (S QMY > (T RN (T RNV -0 .

It follows immediately from Solomon’s theorem that {dF] A - AdF] :
. . - q
1 << <ig< !} spans (7.7 @ A)" (over R). This is in fact a
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basis, since 7.7 affords the regular representation of W, so
dim (77 ® A)" = 2!. We therefore have the following

(3.7) COROLLARY. (/7 ® A)" is an exterior algebra with
generators

dF e (/. 7)m @ AW, for 1<i<I.

We will see later that this exterior algebra is, with degrees in /.7 doubled,
the cohomology ring of the compact Lie group G. As W-representations,
we have &/ = 27 and the corollary gives the following

(3.8) MULTIPLICITY FORMULA.
Y dim Homy (A9, 27" )u" = s,(u™, ..., u™) ,
n=20

where s, is the elementary symmetric polynomial in [-variables, and
the m; are the exponents of W.

In particular, the birthday of A7 is m; + -+ + m,, if g is simple.

(3.9) We close this section with a digression. Suppose g is simple, so all A9
are irreducible W-modules. We can actually witness the birth of A¢ in
¢ using the differentials dF;, as follows. Choose a basis x;, ..., x; of t*,
and consider a g-form

W = E fil,...,iquil/\"'/\dxiq e YR A9

The linear span of the coefficient polynomials f; . . 1s independent of the
choice of basis {x;}. Moreover, if o is W-invariant and nonzero, then its
coefficients span a W-invariant subspace of % which is isomorphic to A¢
as a W-module, since the latter is irreducible and self-contragredient.

For example, we have seen that

dF\A -+ AdF; = clldx, A -+ Adx, ,

where ¢ is a nonzero scalar, and IT is the primordial harmonic polynomial,
affording the sign character of W. We have a generalization of this for
all A9,

(3.10) PROPOSITION.  For 1<qg<, the coefficients of
dF\n -+ AdF, are harmonic polynomials. They span an irreducible
W-submodule of 27 ™1+~ +™mq  isomorphic to AA1.
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Proof. The coefficients of dFiA---AdF,e (8™t " Q AW
span a W-invariant subspace of S”1* " * ™4 isomorphic to A?. As in (3.4),
these coefficients are harmonic because m; + --- + m, is the birthday
of A4, by the multiplicity formula (3.8). L]

4. INVARIANT DIFFERENTIAL FORMS

The ideas in this section go back to E. Cartan and de Rham. For a thorough
exposition, see [C-E].

(4.1) Suppose a compact Lie group G acts transitively on a manifold M.
Let 1, be the diffeomorphism of M corresponding to g € G. A differential
p-form w € Q7(M) is G-invariant if 1¥® = ®. Such a form is determined
by its value at any one point of M. One shows by averaging that every
de Rham cohomology class on M is represented by a G-invariant form, and
that the subcomplex of invariant forms is preserved by the exterior derivative.

Identify M = G/K where K is the stabilizer of a point 0 € M. We have
an orthogonal decomposition g = r @ n, where r is the Lie algebra of K.
Moreover this decomposition is preserved by Ad(K). For example if G acts
on itself by left multiplication then K = 1 and n = ¢. For another example
take M = G/T, so K = Tand n = m. In general, n is naturally identified with
the tangent space 7,(M), so an invariant form ® is determined by the
skew-symmetric multilinear map

W=0y,:nX "+ Xn—>R.

That is, o € A?n*. The invariance of ® under K implies the Ad(K)-
invariance of . Conversely, any element ® € (A?n*)X determines a
G-invariant form ® on M by the formula

d)g-o((d’tg)oXla cery (dTg)oXp) = (D(XI, -'-’Xp) s

for X|, ..., X, e nand g € G. Thus we may identify the G-invariant p-forms
on M with the space (A?n*)X. In this view, the exterior derivative becomes
the map &: (A?n*)X - (AP+1n*)K given by
1 o A A
8@ (Xo,...,X,) = — Y D o(Xn XX, e X Xy X))
1<j
Here " means the term is omitted, and [X;, X;], is the projection of [X:, X;]

into n along r. The complex {(A”n*)X,8} computes the de Rham
cohomology of M.
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