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2. BASIC MATERIAL
For more details in this section see [A], for example.

(2.1) Recall that G is a compact connected Lie group with maximal torus 7,
having respective Lie algebras ¢ and t. The Weyl group is the finite group
W = N/T, where N is the normalizer in G of 7. Since G is compact, there
is an Ad(G)-invariant inner product ¢ , » on g, obtained by averaging any
inner product over G. Let m be the orthogonal complement of t in g with
respect to this inner product, so

g=1t®m (orthogonal) .
The infinitesimal version of invariance of the inner product is the identity
(X, Y], Z) + (Y, [X,Z]) =0,
for X, Y,Z € g.

(2.2) The exponential map exp:g — G is surjective, since G is compact.
This is one of the deeper theorems in a first course on Lie groups. We actually
only need this surjectivity for exp:t — 7, which is clear.

The Lie algebra t is abelian (the bracket is zero); in fact t is a maximal
abelian subalgebra of g. In particular, no nonzero vector in m has zero bracket
with all of t. Likewise, Ad(7T) has no nonzero invariant vectors in m.

Now a torus is a topologically cyclic group. That means there exists a
generic element ty, € T whose powers form a dense subgroup of 7. It follows
that the single operator Ad(¢y) can have no invariants in m. Likewise in the
group G, it can be shown that a maximal torus is its own centralizer, so
the centralizer in G of 7, is just 7. There is a similar notion in the Lie
algebra. A regular element of t is one whose Ad(G)-centralizer is exactly
Ad(T). To find one, take any H, € t such that exp H, = ¢,.

(2.3) The group G acts on ¢ via Ad, and this induces an action of W
ont. No element of W acts trivially, and the image of Win GL(t) is generated
by reflections about certain hyperplanes defined as follows.

Since the nontrivial irreducible representations of a torus are given
by two dimensional rotations, we have an orthogonal decomposition
m=m @ - ®m,, where each m, is two dimensional and there is a
finite set of nonzero linear functionals A+ = {ay,...,a,} Ct*, called
positive roots such that for H e t, the eigenvalues of Adexp H on m; are
exp(+)/—1a;(H)). We determine the signs as follows. Fix a regular
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element H, € t. We may and shall choose the positive roots so that they take
strictly positive values on H,. The action of W on t is generated by
reflections about the kernels of the positive roots.

Since each m; is also preserved by ad(t), we can choose an orthonormal
basis {X;, X,.;} of m; such that, for H € t, the matrix of ad(H) |,, with

respect to this basis is
0 o(H)
—o(H) 0 )

Note that the ad-invariance of the inner product ( , ) implies, for all
I1<igv,alll1 <j<2vand all H €t that

(H, [X;, X;1) = ([H, X;], X;) = —o;(H)(Xirv, X;) .

By orthonormality, this last pairing can only be nontrivial if j =i + v.
Hence if j#i+ v, we have [X;, X;] € m. The same thing happens if
i>vandj#1i-—v.

On the other hand, for 1<i<v, set H;=[X;,X,+:;]. This is
Ad(T)-invariant, so H; € t, and ad(H;)m; C m,;. It follows that the span
of X;,X,;,v, H;is a Lie subalgebra ¢; of g. It is always isomorphic to du(2).

3. INVARIANT THEORY

All proofs missing from this section may be found in the textbook [H],
the expository article [F], or [BK].

(3.1) Let

/

F=@ ¥ and A= @D (=dimt)
p=0

g=0

be the symmetric and exterior algebras on t*, respectively. The adjoint action
of W on t induces representations of W on & and A by degree-preserving
algebra automorphisms. For example, the action of W on A’is multiplication

by the sign character

e:W—-{+£1} given by ¢&(w)=detAd(w);.

Note that €(w) is the parity of the number of reflections needed to express
Ad(w);.
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