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ON THE COHOMOLOGY OF COMPACT LIE GROUPS

by Mark REEDER

ABSTRACT. We give a new computation of the cohomology of a Lie group that
some mathematicians may find to be shorter and more elementary than previous
approaches. The main new ingredient is a result of L. Solomon on differential forms
invariant under a finite reflection group. The cohomology is shown to have a bi-grading
which has several interpretations.

1. INTRODUCTION

Let G be a compact connected Lie group, and let 7 be a maximal
torus in G. We denote the corresponding Lie algebras by g and t. Let W be
the Weyl group of Tin G. Then W acts on t as a group generated by reflections
about the kernels of the roots of t in ¢ ® C. It has been known since the first
half of this century that the cohomology ring H(G), with real coefficients, is
an exterior algebra with generators in degrees 2m; + 1, ...,2m,; + 1, where
m;+1,...,m;+ 1 are the degrees of homogeneous generators of the ring
of W-invariant polynomial functions on t. In particular, the Poincaré
polynomial of G is (1 + ¢2m1+1)--- (1 4+ ¢?2™+1), and G has the cohomology
of a product of odd-dimensional spheres.

Despite its age and familiarity, it is not easy to find a proof of this theorem
in the literature. There are many beginnings and sketches in the textbooks, but
the difficult part, namely the remarkable connection between degrees of
invariant polynomials and Betti numbers, usually goes unproven. One reason
is that the standard proofs (for example, [Bo2], [Ch], [L]) require substantial
algebraic preliminaries on Hopf algebras, spectral sequences, and differential
algebras. (See [Bol] and [Sam] for historical surveys.)

We offer here a new but less sophisticated computation of the cohomology
of a Lie group, avoiding the above algebraic techniques. Instead we use
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standard Lie theory and more invariant theory than is customary. We have
tried to give a fairly complete treatment, in which it is seen that only a few
ideas are used repeatedly. The most serious omission of proof is that of
Chevalley’s theorem on invariant polynomials, but that has many accessible
references. Hopefully, enough background has been included to make the
whole story coherent to someone with a basic knowledge of Lie groups and
differential topology.

A sketch of our computation of H(G) goes as follows. Consider the
manifold M consisting of pairs (g, T’), where g € G and T’ is a maximal torus
in G which contains g. There is a natural map y: M — G, known already
to Weyl, given by conjugation. We make the apparently new observation
that y induces an isomorphism of real cohomology rings H(M) = H(G).
This uses only standard facts gleaned from the differential of y. One could
also invoke the spectral sequence of the fibration G — G/T. This spectral
sequence was shown by Leray to degenerate at E3. It in fact has a spectral
subsequence (the W-invariants) which already degenerates at E? and still
computes H(G) (see (6.4) below).

We still have to compute the cohomology of M. It is easy to see that
HWM) =[H(G/T)Q H(T)]". The ring H(T) is naturally isomorphic to the
exterior algebra of t*, and H(G/T) is isomorphic to the space 77 of
W-harmonic polynomials on t, according to a famous theorem of Borel. For
completeness, we give a proof of this in the same elementary, if less efficient
spirit. As with all proofs, the essential thing is to show that the odd
cohomology of G/ T vanishes. We do this with a direct generalization of the
Morse-theoretic computation of the cohomology of the two-sphere.

So now we are down to invariant theory, and must compute
[77 @ At*]". This follows immediately from Solomon’s determination of
the W-invariant differential forms on t with polynomial coefficients, which in
turn depends on Chevalley’s well-known description of W-invariant
polynomials. This gives us the desired connection between degrees of
W-invariants and Betti numbers of G. Solomon’s result also leads to pretty
formulas for the multiplicities of the W-modules A?t* in spaces of harmonic
polynomials (see (3.8)), as well as a generalization of a classical result on the
Jacobian of the basic invariants (see (3.9)).

The paper is organized as follows: First the structure of G and its adjoint
representation is recalled, then comes invariant theory, followed by the proof
of Borel’s theorem, finishing with the computation of H(G) and some remarks
on its natural bigrading. Throughout, cohomology has real coefficients.
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