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en ayant tenu compte des relations A(0,0,0) = — 4 et A'(0,0,0) = 0. La
2 00

conclusion résulte de A”(0) = [0 2 O
0 0 2

Prenons un exemple: ¢ = (aba?b?a, aba3bab). Calculons ®,(0,0, z). La
réduction de ¢ donne (a@ba, — (ab)?) donc

(I)o(o, Oa Z) = (0! - t3(Z), O) = (09 3Z - Z3, O)
et
05(0,0,2) = u3(z2)*> = (z2 - 1)2.

Pour calculer ®,(x, 0,0), multiplions o par (ab,b~'), on obtient
(babab, bab), qui est réduit. Donc

@, (x, 0,0) = (0,0, — £, (x)) = (0,0, —x)
et
Os(x,0,0) = u;(x)2=1.
De facon analogue, on obtient
®4(0,,0) = (p3(»),0,0) = (>~ 3y,0,0)

et

Q:(0,7,0) = (»* - 1.

Ensuite on a

0 0 -1y /O =3 0

-2070,0,0)=1-3 0 ©0 0 0 3| -1
0 3 0 -1 0 O
0 O 0
d’ou Q./(0,0,00=10 -4 0
0O 0 -4

VI. CAS D’UN GROUPE LIBRE A PLUS DE DEUX GENERATEURS

Avant de passer a la généralisation partielle de ce qui précede, nous avons
besoin d’un certain nombre de lemmes sur SL (2, C).
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LEMME 1. Soit A et B deux éléments de SL(2,C). On a
ABA = AtrAB — B!
et tr(ABA) = (tr A) (tr AB) — (ir B) .

Démonstration. On a, par Cayley-Hamilton, AB + (AB)~! = tr AB,
d’ou

ABA + B! = AtrAB .

LEMME 2 (Formule de Fricke). Si A et B sont deux éléments de
SL(12,C), ona

tr(ABA-'B-1) = (tr A)? + (tr B)? + (tr AB)? — (tr A) (tr B) (tr AB) — 2.

Démonstration. Une utilisation répétée du théoréme de Cayley-Hamilton
suivie de celle du lemme précédent donne

ABA-'B~! = AB(tr AB — BA)
= ABtrAB - A(BtrB—-1)A
= ABtrAB — (AtrAB—-B " )trB+ Atr4 — 1

d’ou le résultat, en prenant les traces des deux membres.
Considérons maintenant trois éléments A4,, A,, A; de SL(2, C) dont les

traces sont respectivement x;, X, et x3. On note y;, ¥, et y; les traces de A, A5,
A3A1 et A1A2.

LEMME 3. On a trA1A2A3 + tI'AlA3A2 = XY + X3 + X33 — X1 X2 X3.
Démonstration. En vertu du lemme 1.1, on a

A2A3 + A3A2 =¥ — X2X3 + X3A2 + X2A3

d’ou
A1A2A; + A1A3A; = (V1 —XX3) A + X344, + A1 45,

d’ou le résultat.

LEMME 4. On a
(tf A1A2A3) (tr A1A3A2)
=X]+ X3+ X+ Y]+ Yy + V) — X1 XaPs — XaXsPy — XsXo s + Y Vays — 4

Démonstration. Utilisant le lemme 1 de deux facons, on obtient
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A1 Ay A3 A A3 A, = (A tr(A14,45) — A5 A5 ) A3A,
= A1 A,(1, A3 — A 1_1)142
d’ou
A1 AsAxtr (A1 Ay As) = AT TAS VA A, + 1,414,454, — AjA,ATMA,
= A; A7 A3 Ay + pAy(n Ay — ALY

— A (A, tr (4,471 - Ay)
= A3_1A2_1A3A2 + 1 A1(1A4: — X3+ A3)

- AAxx,— ) + xidi— 1,
d’ou le résultat.

COROLLAIRE 5. Les nombres tr(A,A,As) et tr(4;4;A4,) sont les
racines de l’équation suivante, dont l’'inconnue est z.

2?2-pX,Y)z+q(X,Y)=0

ou

PX,Y) =x1p1 + X2 + X3)3 — X1X0X3
et

qX, Y) = X1+ X5+ X5+ Y1+ Y3+ Y3 — X0y — %X
— X3X1 Y2 + Y1)2)3 — 4.
Nous venons de définir les polyndbmes p et g en les variables

X =(X1,X%,x3) et Y =(y1,Y2,)3). Posons

AX, Y,2)=z22-pX, )z +¢qX, Y).

PROPOSITION 6. Le polynéme A est irréductible dans C[X, Y, z].

Démonstration. Si A était décomposable, le polyndme p? — 4q
serait un carré dans C[X, Y]. II en serait de méme du polyndome
(p*—4q) 0,0,0, 1, y2,»;) dans C[y, y2, y3]. Or (p*—4¢q) 0,0,0, 31, 2, ys)
est de degré 3, c’est donc impossible.

Notons V la sous-variété algébrique de C7, ensemble des zéros de A. Elle
est irréductible.

Désignons par 7T P’application de [SL(2, C)]® dans C7 ainsi définie:

T(Al,Az,A3) = (trAl,trAz,trAg,trA2A3,trA3A1,trA1A2,trA1A2A3) .

Il résulte du corollaire 5 que I’image de T est contenue dans la variété V.
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PROPOSITION 7. L’image de T est la variété V.

Démonstration. Donnons-nous un point (X, Xz, X3, Y1, Y2, ¥3,2) € V.
Nous avons & construire trois matrices A4, A,, A3 telles que T(A,, A;, A3)
= (X1, %2, X3, V1, V2, V3, 2). Nous allons distinguer plusieurs cas

— P’une des expressions A(x;, X2,V3), A(X2,X3,¥1), A(X3,X1,y2) n’est pas
nulle.
Traitons le cas ot A(xy, X2, y3) # 0. Prenons

X 1 0 —-t! t u
A= , Ay = : A3=( )
-1 0 T X vV X3—1

Nous devons en outre avoir

Xy +0—-—u=y

— 1t W+ tu+ x0-1)=n

T+ -t Ixpo+ 10— =2
T+ 171 =y,

ts—1t) —uv=1.

Les trois premiéres équations forment un systéme linéaire en ¢, u, v dont le
déterminant, compte tenu de la quatrieme équation, vaut — A(x;, X2, ¥3), qui
est non nul par hypothe¢se. La compatibilité avec la derniére équation est
assurée par la relation

A(xlaxl’x3sylay29y3az) = 0 .

— A(X1, X2, ¥3) = A(X2, X3, Y1) = A(X3, X1, ¥,) = 0 et ’'un au moins des | x; |
est différent de 2.

Traitons le cas | x; | # 2.

On vérifie que I’on peut prendre les trois matrices soit sous la forme

o ) (65 (007
o ) (u5) (6 1),

— Enfin dans le dernier cas, on peut choisir pour 4,, 4,, A; les matrices
+I1, +1, +1.

soit sous la forme
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PROPOSITION 8. Les conditions suivantes sont équivalentes:
1. A,, A,, A3 ont une direction propre commune.
2. AGt,x,)3) = A0, X3, 01) = Mg, x, ) =0 et trA1A,A; = tr AjAzA,.
3. A1, X2, ¥3) = A2, X3, ¥1) = MXs, X1, 02) = 6(X, Y) =0
ou & = p?—4q.

Démonstration. Clairement les assertions 2 et 3 sont équivalentes et sont
impliquées par la premieére.

Supposons donc que 'on ait A(x;, X2, ¥3) = AXx2, X3, Y1) = A(X3, X1, 32) =0
et que A,;,A,, A; n’aient pas de direction propre commune. Comme les
opérateurs A4;, A,, A; ont deux a deux une direction propre commune, on
peut dans une base convenable les représenter par des matrices de la forme

(t 0)(u 2i)et (U O)avec CE+0 et t#+ 1.
0 ¢! 0 u-! C ov-1

On vérifie alors que trA,A,A; = tuv + (ftuv) ' + (&t et trA;A;A4,
= tuv + (tuv) ~ ' + {&¢~!. Et donc tr A, A, A3 # tr A; A3 A,. Ceci acheve la
démonstration.

Nous pouvons maintenant envisager de généraliser la section I au cas d’un
groupe libre ayant un nombre fini de générateurs. Nous considérons d’abord
le cas de Fj, le groupe libre engendré par a;, a,, @;. Si ¢ est un homomor-
phisme de F; dans SL(2, C), nous poserons

To = T(o(a1), 0(a2), 9 (a3)) .

PROPOSITION 9. Si we F;, il existe un polynéme PeZ|X,Y,z],
unique modulo A, tel que pour tout ¢ € Hom(F;, SL(2,C)) on ait

tr (w) = P(T9) .

Démonstration. 1.existence se démontre par application répétée du
théoréme de Cayley-Hamilton et du lemme I.1. L’unicité résulte de la proposi-
tion 7.

THEOREME 10. Si o est un endomorphisme de F;, il existe une
unique application polynomiale ®, de V dans V telle que, pour tout
¢ € Hom(F;, SL(2,C)) on ait

T(¢ © o) = O;(T9) .

Démonstration. 11 suffit d’appliquer la proposition précédente aux
éléments o (a;), 6(ay), o(as), o(a,as), o(asa;), o(a1a,) et 6(a1axa;) de F;.
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COROLLAIRE 11. Si o et T sont deux endomorphismes de F, et si
I’on pose o6t =100, ona @5 = o, 0 D,.

PROPOSITION 12. Soit Q la sous-variété de 'V définie par A(X, Y, 2)
:Oa A’(xlsx2ay3)=)“(x29x3’y1)=}"(x35x1ay2)=6(Xa Y) = 0. AlorS
Q est invariante par toute application @ .

Démonstration. Ceci résulte de la proposition 8.

Les calculs sur F,, le groupe libre engendré par ai, @z, ', @n; sont
moins explicites. Soit I I’ensemble des parties non vides de {1,2, -+, n}. Un
élément i de I est la donnée de ses éléments i, i, - **, iy ordonnés en

croissant. Pour chaque ¢ € Hom(F,, SL(2,C)), on note T la collection
{tr o(a;,a;, " * @i, )}ie1, qui ne dépend que de la classe de la représentation ¢.
On sait que I’ensemble des classes de représentations est une variété alge-
brique [2]. Sa dimension est 3(n — 1). On peut le voir en observant que, sauf
cas exceptionnels, on peut, étant donn€ ¢ € Hom (F,, SL(2, C)), fixer une
base de C2? de facon que les matrices de ¢@(a;) et ¢(a,) aient la forme

( i 1) et (O ! 1) . Les autres éléments ¢(a3), - -, ¢ (a,) dépendent
-1 0 t X

alors de 3 (n — 2) paramétres. Une application répétée du théoréme de Cayley-
Hamilton et de la proposition 1.1 montre alors 1’analogue de la proposition
9: étant donné w € F, , il existe un polyndme P € Z[(x;); < ;], unique modulo
un certain idéal définissant une sous-variété algébrique de dimension 3(n — 1)
de CI, tel que, pour tout @ € Hom(F,, SL(2, C)), on ait tr o(w) = P(To).

Pour chaque o € End(F,) on définit de méme que précédemment une
application ®,. Les applications ®, laissent invariante une variété (celle qui
est définie, en termes de traces, par le fait que n matrices 2 X 2 aient une
direction propre commune).

Des résultats analogues sur F, ont déja été obtenus par Kolar et Nori [4].
On doit cependant observer qu’ils utilisent beaucoup trop de variables et qu’ils
ne se sont pas préoccupés des questions d’unicité.

Dans deux articles a venir, I’'un des auteurs donne un procédé général pour
obtenir des relations entre les traces de matrice p X p et de leurs produits et
traite le cas ou au lieu de considérer les représentations d’un groupe libre dans
SL(2, C) on envisage des représentations dans SL (3, C).

Terminons par une derniére remarque. Au lieu de considérer des représen-
tations de F dans SL (2, C), on peut utiliser des représentations dans GL (2, C).
En effet, a cause de I’homogénéité, le lemme 1.1 est valable sans restriction
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sur les déterminants. Par ailleurs, pour une matrice 2 X 2, A4, le théoréme de
Cayley-Hamilton s’écrit

1
A2 — A(tr A) + 5 [(tr A)? —trA2] =0.

Donc, si A4,,A4,,--,A, sont n matrices 2 X 2 inversibles, par une
méthode analogue a celle que nous avons développée, tout produit de la
forme X7'X52---X;* (avec meZ et X, e{A, A " ,A,} pour
Jj=1,2,---,n) a une trace qui s’exprime comme fraction rationnelle a
coefficients entiers en les traces des produits {A4; A;, -+ A; }ies €t les traces
des matrices {A%}; =15, n-

NOTE AJOUTEE SUR EPREUVES

Au moment de corriger les épreuves, les auteurs ont eu connaissance d’un
certain nombre de travaux antérieurs ([9] a [16]) sur le méme sujet.

L’existence de P, a été prouvée par Horowitz [9]. L’application induite
®, a été considérée (seulement dans le cas ou o est un isomorphisme)
¢galement par Horowitz [10] qui a aussi déterminé le noyau de ®. La consi-
dération du polyndbme Q, est nouvelle. Le lemme 2 de la section II se
trouve dans [15].

Certaines démonstrations données ici sont plus simples que celles de
Horowitz, bien qu’il y ait des recouvrements. Alors que Horowitz n’utilise que
des relations entre traces, nos calculs prennent place dans I’algébre introduite
par Procesi [13] et Razmyslov [14], ce qui simplifie considérablement les
calculs. D’ailleurs, Magnus [12] fait allusion a la complexité des démons-
trations de certaines identités (par exemple, les lemmes 3 et 4 de la section VI)
et demande s’il est possible de les simplifier. Signalons qu’une description
compléte de I’idéal des relations entre traces a €t€ donnée par Whittemore [16]
dans le cas d’un groupe libre a quatre générateurs.

Les articles [11], [13] et [14] traitent des identités pour les matrices n X n.
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