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Démonstration. On peut évidemment supposer que ’on a d%y; < d%y,
< dO%y;. La relation A o y = 0 s’écrit ys(ys — y,u,) = 4 — i — y2, d’ou
I’on déduit d°(y; — y,v,) < d%y,. Supposons que ’on ait d2(y; — yy>)
> d%y;. On a alors do%y, = d%; et doy; + dOy, + dOy; < 2d%y; et,
donc, y; = c € R. Par une procédure de descente analogue a celle de la
démonstration du théoréme I1.4, par composition par divers ®, on peut faire
décroitre deg ¢ tant que ’une de ses composantes n’est pas constante.

THEOREME 5. Pour o € Hom(F,F),Q,=0 si et seulement si o
n’est pas injectif.

Démonstration. Supposons ¢ non injectif. En vertu de la proposition 3,
il existe p € Aut F tel que op(b) = e. Or, on sait que Qs = 0, Qs © D,. Or,
il est facile de vérifier que Q,, = 0. Comme Q, = 1, cela implique Q, = 0.
Supposons maintenant que 1’on ait Q; = 0. En vertu du lemme précédent,
il existe T € Aut F tel que la premiére composante de ®., soit constante. Le
lemme I1.2 montre alors que T6(a) = e, ce qui prouve que ¢ n’est pas injective.

V. AUTRES PROPRIETES DES POLYNOMES Q,
THEOREME 1. Pour tout o € EndF, on a les faits suivants:
1°) Os(2¢, 2n, 2en) = (detc)> pour tous e,ne{—1,1}.
2°) A divise le polynome det® — (deto)Qs.

Démonstration. Observons d’abord que si p et g sont deux entiers
rationnels on a

Parpa(%, 3, 2) = 24y () t1g () = Xty (D hy -1 () = Yty -1 ()t ()
+ 2u, 1 (XD ug-1(y) .
Si € et n valent + 1, il est facile de vérifier que
Prpa (28, 21, 2em) = 28PN
et de calculer le gradient de Pyppq:
P:,,.(28,2n,2en) = (ep(p — @), nq(q — p), Enpg)ern .

Considérons maintenant un élément de ¢ de End F dont la matrice est

c = (‘D q) . Ce qui précéde montre que le point (2,2,2) est point fixe
r s

pour ®; et que I’ensemble {(2e,2n,2en);&,m € {— 1, 1}} est globalement
invariant par @,.
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Démontrons la premiére assertion. Différentions deux fois la relation
Ao ®, =A-Q, au point ® = (2€, 21, 2en). On obtient

‘DL (@A (P (@) P (@) = 1" (0) Oo ()

en ayant tenu compte de ce que A(®), A’ () et A'(®@y(w)) sont nuls. Par
ailleurs, ®; — (Pyrpa, Parps, Pao+rpa+s) €st un multiple de A. Par conséquent,
on obtient @/ (w) en différentiant en ® la fonction (Psrpe, Parpss Pap+rpa+s).
Tous calculs faits on obtient la premiére assertion.

Pour démontrer la seconde assertion, nous allons montrer que le polynéme
det ®. — (det 6)Q, s’annule en suffisamment de points de Q.

Considérons le point o (?, ) = (2cost, 2 cosu,2cos (f + u)) de Q. Son
image par @, est le point o (p? + qu, rt + su) que nous noterons ® © G (¢, u).

Par différentiation de la relation ®;, ©c ® = ® © 6, on obtient

ow 0w o  _ o _
@, o) —A(@.o®)— =(detc) |— o] A|—oo0c].
ot ou ot ou

Par ailleurs, on établit facilement la relation

do Jw
— A—=—-A"0®
at ou

ou ’on a fait les identifications nécessaires.

La relation A © @, = A - Q, donne par différentiation, en observant que
Aow=0,

(A o®;00) (o) =(Qow)r cw)-V

ou V est un vecteur arbitraire. Compte tenu des relations précédentes, ceci
s’écrit encore

do _ dw _ oo 0w
det |—o0,—o06,(@. 0w V]| = (Q; ©c w)det | —, —
(at =05, 00) ) © “’)e(af au’V)

d’ou
oW 0
det ((cp;oco)-—, @0 0) —, (@0 w)- V)
ot ou

= (det 6) (Q,; © w)det (6_03 , 8_co_ , V)
ot Odu

Ceci montre 1’égalité¢ det(®. o w) = (det 6) (Qs; © ®) en chaque point ou le
gradient de w n’est pas nul.
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THEOREME 2.

1. O;(0,0,0) vaut 0 ou 1 selon que deto est pair ou impair.
2. ®,(0,0,0) = (0,0,0) si et seulement si detc est impair.

3. Q.(0,0,0)=0.

4. Si detc est impair, Q.(0,0,0) est diagonal négatif.

Démonstration. Nous allons calculer ®,(0, 0, z). Pour ce faire, considérons
0 1 0 —-Ar-!

¢ € Hom(F, SL(2,C)) tel que ¢(a) = ( | O) et ¢(b) = (7» 0 ) ,
avec A+ A~ ! =2z On a évidemment ¢(@)? = ¢(b)2= — 1 et, donc tout
produit d’un certain nombre de ¢ (@) et de ¢ (b) est réductible a ’'une des formes
+ ¢((ab)"), + ¢o((@b)"a), =+ @((ba)”) ou =+ ¢((ba)"b) dont les traces
respectives sont + £,(z), 0, + £,(z) et 0 (ou #, est un polyndme de Chebyschev
de premiere espéce, cf. II).

Ceci nous conduit a définir le procédé suivant de réduction d’un élément
de F: on remplace autant de fois qu’il est possible a? et b2 par — 1. Ainsi le
mot aba?b3 donne — a.

Réduisons ainsi les mots ¢ (a) et 6(b). On obtient respectivement €6 (a) et
no(b) ou € et n valent + 1. Nous pouvons dresser le tableau suivant qui
donne, pour les différentes valeurs possibles de 6(a) et o(b), en premiére
ligne, ®;(0,0,2) et, en seconde, O,;(0, 0, 2) en termes des polyndmes de
Chebyschev ¢ et u en la variable z.

o (b) (ab)™ (ab)"a (ba)" (ba)"b
c(a)
(tm’tn,tm-i-n) (tm: O’ O) (tmatnatm—n) (tmyo’ O)
(ab)™
0 u’, 0 u’
(0, tn’o) (0’09 -—tm—n) (Os tn,O) (0709 tm+n+1)
(ab)™a
u, Ups U, Un a1
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(tmatn’tm—n) (tm,()’O) (tm9tnatm+n) (tmaO’O) .

(ba)™
0 ul, 0 u.,
(0: tn; O) (Os 09 Z‘m+n+1) (O: tn,o) (O’ O, —tm—n)
(ba)™b
ui ufn+n+1 uf-z ufn—n

On observe que O, (0, 0, 2) = u,(z)? ot v = det 6. Il est clair, par ailleurs,
que det o et det 6 ont méme parité. La premiére assertion résulte alors de ce

. nm
que u,(0) = sm—z— .
La seconde assertion résulte de I’examen du tableau, compte tenu de
nm
ce que #,(0) = 2cos—2— .

La troisiéme assertion résulte simplement de la parité de uf,.

Démontrons la derniére assertion. D’abord, il est facile de déterminer
®,(x,0,0) et ®;(0,5, 0). En effet soit 1= (a"!,ab) e EndF. On a
®.(x,y,2) = (x,2,¥) et par conséquent P, (x,y, 2) = Os(x, 2, »), ce qui
permet par le procédé précédent de déterminer @, (0, y, 0). De la méme fagon
pour calculer ®;(x, 0, 0) on utilise T = (ab, b~1).

Supposons donc que det 6 = 1 (mod 2). Ce qui précede montre que deux
des composantes de chacune des fonctions ®,(x, 0,0), ®,(0,y, 0) et
®,(0, 0, z) sont nulles alors que les troisiemes sont de la forme =+ p, (x),
+ Pn, (), £ Pn,(2) Tespectivement, les entiers ny, ny, n; étant impairs. Par
ailleurs, en vertu du théoréme 1, compte tenu de Q,(0,0,0) =1, on a

n;m
det ®;(0,0,0) = 1 (mod 2). Comme p, (0) = nisin—z— # 0 (pouri=1, 2, 3),

on en déduit que la matrice ®,(0, 0, 0) a un terme non nul et un seul aussi
bien dans chaque ligne que dans chaque colonne et que ses termes non nuls
sont, aux signes prés, ny, n, €t n3. Autrement dit *®’(0, 0, 0)®’ (0, 0, 0) est
une matrice diagonale dont les éléments diagonaux sont des carrés de nombres
impairs.

Différentions maintenant deux fois a [I’origine la relation
Ao ®;, =A-Q;. On obtient

‘@.(0,0,0)A"(0)®;(0,0,0) = A" (0) — 4Q2 (0,0, 0)
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en ayant tenu compte des relations A(0,0,0) = — 4 et A'(0,0,0) = 0. La
2 00

conclusion résulte de A”(0) = [0 2 O
0 0 2

Prenons un exemple: ¢ = (aba?b?a, aba3bab). Calculons ®,(0,0, z). La
réduction de ¢ donne (a@ba, — (ab)?) donc

(I)o(o, Oa Z) = (0! - t3(Z), O) = (09 3Z - Z3, O)
et
05(0,0,2) = u3(z2)*> = (z2 - 1)2.

Pour calculer ®,(x, 0,0), multiplions o par (ab,b~'), on obtient
(babab, bab), qui est réduit. Donc

@, (x, 0,0) = (0,0, — £, (x)) = (0,0, —x)
et
Os(x,0,0) = u;(x)2=1.
De facon analogue, on obtient
®4(0,,0) = (p3(»),0,0) = (>~ 3y,0,0)

et

Q:(0,7,0) = (»* - 1.

Ensuite on a

0 0 -1y /O =3 0

-2070,0,0)=1-3 0 ©0 0 0 3| -1
0 3 0 -1 0 O
0 O 0
d’ou Q./(0,0,00=10 -4 0
0O 0 -4

VI. CAS D’UN GROUPE LIBRE A PLUS DE DEUX GENERATEURS

Avant de passer a la généralisation partielle de ce qui précede, nous avons
besoin d’un certain nombre de lemmes sur SL (2, C).
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