Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 39 (1993)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: POLYNOMES ASSOCIES AUX ENDOMORPHISMES DE GROUPES
LIBRES

Autor: Peyriére, Jacques

Kapitel: IV. Etude des relations $\Phi_\sigma = \Phi_\tau$ et $Q \sigma = 0$.

DOI: https://doi.org/10.5169/seals-60419

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-60419
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

162 J. PEYRIERE, Z.-Y. WEN AND Z.-X. WEN

THEOREME 4. &/ est le groupe engendré par ®,,®;, d, et p.

Démonstration. 11 suffit d’appliquer de fagon répétitive le lemme
précédent pour se ramener au lemme 2.

THEOREME 5. L’ensemble des o € Hom(F,F) tels que Q, =1 est
[’ensemble des automorphismes de F.

Démonstration. Dire que Q, = 1 équivaut a dire &, € .« Si &, € , le
lemme 3 permet de montrer D’existence d’un te€ <a,B,y> tel que
®, 0o &, €{6,p}. Mais, en vertu des lemmes II.3 et II.4, on a alors
@, 0 @, = id. Il en résulte (théoreme I1.5) que T © ¢ est un automorphisme,
donc aussi o©.

LEMME 6. Si i, désigne [lautomorphisme intérieur u — wuw !
de F. Ona

i, = BoaPyByaB et i, = aio.

Démonstration. Elle se fait par vérification directe.

THEOREME 7. L’ensemble des automorphismes de F est le groupe
engendré par o,p et v.

Démonstration. Soit 6 € Aut F. Alors &, € /. Comme précédemment,
il existe T € < a, B,y > tel que ., 0 &, = id. Le théoreme I1.1 montre alors
T 06 est soit un automorphisme intérieur, soit un automorphisme intérieur
composé avec (a~!,b~1), qui n’est autre que (af)?. Le théoréme résulte
alors du lemme précédent.

Remarque. Ce théoréme est un résultat ancien de Nielsen [5], [6], mais
la démonstration que nous en donnons ne fait pas appel a la délicate théorie
de la réduction de Nielsen.

IV. ETUDE DES RELATIONS ®;, = ®, ET O, = 0

Notons F* ’ensemble des éléments w de F qui sont image d’un générateur
par un automorphisme de F.

THEOREME 1. Soit o et 1 deux endomorphismes de F tels
que o(a),c(b) et o(ab) soient dans F*. Alors les assertions suivantes

sont équivalentes.:
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1°) @, = D,
2°) 1(a),t(b) et 7t(ab) sont conjugués respectivement a o(a) ou
c@-',o() ou o) ',c(@b) ou oc(ab)'.

Démonstration. 1l est clair que la seconde assertion implique la premiére,
et ce sans qu’il soit nécessaire de faire d’hypotheses sur o.

Supposons que lon ait ®,=®, et o(a) = pu(@),c(d) =v(d) et
o(ab) = E(ab) (ou p, v et & sont des automorphismes de F). On a alors
®, 1, = ®,-1,, d’o0 en vertu du lemme II.4, p~'1(a) = ua*'u-1 pour un
u € F. Par suite 1(a) = p(w)o(a)='n(w) ~!. On opére de méme pour t(b) et
t(ab).

THEOREME 2. Pour des automorphismes ¢ et 1 de F, les assertions
suivantes sont équivalentes:

1°) @, = o,

2°) 6==x1

3°y t=o0i, ou t=o(aPB)?i, pour un weF.

Démonstration. L1’équivalence des assertions 1°) et 3°) est une simple
reformulation du théoréme II.1. L’équivalence de ces assertions avec la
seconde résulte de la caractérisation, en termes de leurs matrices, des auto-
morphismes intérieurs de F ([6]).

PROPOSITION 3. Si o est un endomorphisme de F, non injectif, il
existe deux entiers m et n et un élément w de F tel que o(a) = wnm
et o(b) = wn.

Démonstration. On utilise la théorie de la réduction de Nielsen ([6], [7]).
Etant donné 6 € Hom (F, F) arbitraire, il existe un automorphisme p de F tel
que ’une des éventualités suivantes se produise:

1°) Le couple (cp(a), op (b)) est réduit au sens de Nielsen,

2°) ou(a) est réduit au sens de Nielsen et o (b) = e.

3°) ou(a) =op(d) =e.

Dans le premier cas op est injectif, d’ou la proposition.

LEMME 4. Soit v = (Y¥1,V¥,V¥3) € (R[x,»,2])? (o R est un
domaine d’intégrité de caractéristique nulle) tel que l’on ait )\ o v = 0.

Alors, il existe tve AutF tel que ®.0 vy ait sa premiére composante
constante.
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Démonstration. On peut évidemment supposer que ’on a d%y; < d%y,
< dO%y;. La relation A o y = 0 s’écrit ys(ys — y,u,) = 4 — i — y2, d’ou
I’on déduit d°(y; — y,v,) < d%y,. Supposons que ’on ait d2(y; — yy>)
> d%y;. On a alors do%y, = d%; et doy; + dOy, + dOy; < 2d%y; et,
donc, y; = c € R. Par une procédure de descente analogue a celle de la
démonstration du théoréme I1.4, par composition par divers ®, on peut faire
décroitre deg ¢ tant que ’une de ses composantes n’est pas constante.

THEOREME 5. Pour o € Hom(F,F),Q,=0 si et seulement si o
n’est pas injectif.

Démonstration. Supposons ¢ non injectif. En vertu de la proposition 3,
il existe p € Aut F tel que op(b) = e. Or, on sait que Qs = 0, Qs © D,. Or,
il est facile de vérifier que Q,, = 0. Comme Q, = 1, cela implique Q, = 0.
Supposons maintenant que 1’on ait Q; = 0. En vertu du lemme précédent,
il existe T € Aut F tel que la premiére composante de ®., soit constante. Le
lemme I1.2 montre alors que T6(a) = e, ce qui prouve que ¢ n’est pas injective.

V. AUTRES PROPRIETES DES POLYNOMES Q,
THEOREME 1. Pour tout o € EndF, on a les faits suivants:
1°) Os(2¢, 2n, 2en) = (detc)> pour tous e,ne{—1,1}.
2°) A divise le polynome det® — (deto)Qs.

Démonstration. Observons d’abord que si p et g sont deux entiers
rationnels on a

Parpa(%, 3, 2) = 24y () t1g () = Xty (D hy -1 () = Yty -1 ()t ()
+ 2u, 1 (XD ug-1(y) .
Si € et n valent + 1, il est facile de vérifier que
Prpa (28, 21, 2em) = 28PN
et de calculer le gradient de Pyppq:
P:,,.(28,2n,2en) = (ep(p — @), nq(q — p), Enpg)ern .

Considérons maintenant un élément de ¢ de End F dont la matrice est

c = (‘D q) . Ce qui précéde montre que le point (2,2,2) est point fixe
r s

pour ®; et que I’ensemble {(2e,2n,2en);&,m € {— 1, 1}} est globalement
invariant par @,.
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