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Théorème 4. sd est le groupe engendré par Oa, Oß, <DY et p.

Démonstration. Il suffit d'appliquer de façon répétitive le lemme

précédent pour se ramener au lemme 2.

Théorème 5. L'ensemble des g e Horn (F, F) tels que Qa 1 est

l'ensemble des automorphismes de F.

Démonstration. Dire que Qa 1 équivaut à dire 00 e sd. Si Oa e jaf, le

lemme 3 permet de montrer l'existence d'un t e < a, ß, y > tel que
Ox o Oa e {0, p}. Mais, en vertu des lemmes II.3 et II.4, on a alors
<Ê>T o Oa id. Il en résulte (théorème II.5) que t o g est un automorphisme,
donc aussi g.

Lemme 6. Si iw désigne l'automorphisme intérieur u -> wuw ~1

de F. On a

ia ßaßyßyaß et ib aiaa

Démonstration. Elle se fait par vérification directe.

Théorème 7. L'ensemble des automorphismes de F est le groupe
engendré par a, ß et y.

Démonstration. Soit g e AutF. Alors Oa e sd. Comme précédemment,
il existe te < a, ß, y > tel que Ox o <ï>a id. Le théorème II. 1 montre alors

t o g est soit un automorphisme intérieur, soit un automorphisme intérieur
composé avec (tf_1,Z?_1), qui n'est autre que (aß)2. Le théorème résulte
alors du lemme précédent.

Remarque. Ce théorème est un résultat ancien de Nielsen [5], [6], mais

la démonstration que nous en donnons ne fait pas appel à la délicate théorie
de la réduction de Nielsen.

IV. Etude des relations Oa ®x et Qa 0

Notons F* l'ensemble des éléments w de F qui sont image d'un générateur

par un automorphisme de F.

Théorème 1. Soit o et t deux endomorphismes de F tels

que a(a),ü(b) et g (ab) soient dans F*. Alors les assertions suivantes

sont équivalentes:
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1°) oa oT

2°) t(Z>) et t (ab) sont conjugués respectivement à g {a) ou

G(a)-\o(b) ou G(b)~l ,a(ab) ou G(ab)~l.

Démonstration. Il est clair que la seconde assertion implique la première,

et ce sans qu'il soit nécessaire de faire d'hypothèses sur o.

Supposons que l'on ait Oa Ot et g {a) p(tf), o(Z?) v(Z?) et

g (ab) (où p, v et £ sont des automorphismes de F). On a alors

<É>n-i0 ®n-iT, d'où en vertu du lemme II.4, p_1T(tf) ua±lu~l pour un

u e F. Par suite t (a) \i(ü)G(a)±l\i(ü) -1. On opère de même pour t (b) et

t (ab).

Théorème 2. Pour des automorphismes g et % de F, les assertions

suivantes sont équivalentes:

1°) Oa 0T

2°) 5 ± T

3°) t oiw ou t a(aß)2/w pour un w e F.

Démonstration. L'équivalence des assertions 1°) et 3°) est une simple
reformulation du théorème II.l. L'équivalence de ces assertions avec la
seconde résulte de la caractérisation, en termes de leurs matrices, des

automorphismes intérieurs de F ([6]).

Proposition 3. Si g est un endomorphisme de F\ non injectif, il
existe deux entiers m et n et un élément w de F tel que g (a) wm

et G(b) wn.

Démonstration. On utilise la théorie de la réduction de Nielsen ([6], [7]).
Etant donné o e Horn (F, F) arbitraire, il existe un automorphisme p de F tel
que l'une des éventualités suivantes se produise:

1°) Le couple (op(ûr), op(£)) est réduit au sens de Nielsen,

2°) ofi(tf) est réduit au sens de Nielsen et op(&) e.

3°) op(a) op(b) e.

Dans le premier cas op est injectif, d'où la proposition.

Lemme 4. Soit y (\j/i, \|/2, i|/3) e (R [x, y, z])3 (où R est un
domaine d'intégrité de caractéristique nulle) tel que l'on ait X o \j/ 0.
Alors, il existe i e AutF tel que Ot o \p ait sa première composante
constante.
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Démonstration. On peut évidemment supposer que l'on a d°\j/x ^ d°\j/2

^ °\p3. La relation X o \j/ 0 s'écrit \p3(\|/3 - \|/i\p2) 4 - \y] - yl, d'où
l'on déduit d0(\|/3 - M/1M/2) ^ d°\\f2. Supposons que l'on ait ^/°(\i/3 — ^1^2)
^ d°y3. On a alors d°y2 d°\\f3 et <i°\j/i + d°\y2 + d°\\f3 ^ 2d°\\f3 et,

donc, \y{ c e R. Par une procédure de descente analogue à celle de la
démonstration du théorème II.4, par composition par divers Ot on peut faire
décroître deg \j/ tant que l'une de ses composantes n'est pas constante.

Théorème 5. Pour a e Hom (F, F), Qa 0 si et seulement si o
n'est pas injectif.

Démonstration. Supposons g non injectif. En vertu de la proposition 3,

il existe p e AutFtel que op(Z?) e. Or, on sait que Qa]X Q^Qo 0 Or,
il est facile de vérifier que Qa]i 0. Comme Qß 1, cela implique Qa 0.

Supposons maintenant que l'on ait Qa 0. En vertu du lemme précédent,
il existe t e AutFtel que la première composante de <I>TG soit constante. Le
lemme II.2 montre alors que t a (a) e, ce qui prouve que g n'est pas injective.

Théorème 1. Pour tout g e End F, on a les faits suivants:

1°) ôo(2e, 2r|, 2srj) (det g)2 pour tous 8, ri e { - 1,1}.
2°) X divise le polynôme detO^ - (deto)QG.

Démonstration. Observons d'abord que si p et q sont deux entiers

rationnels on a

PaPbA*>y> z) zup(x)Ug(y) - xup(x)Ug-i(y) - yup-fx)uq{y)
+ 2%_i(x)W(7_IOO

Si 8 et p valent ± 1, il est facile de vérifier que

PaPbq{2s, 2rj, 2sr|) 2s^îT?

et de calculer le gradient de PaPbv-

P'aPbq{2s, 2% 28Ti) (sp(p - q), m{q~P)> pq)zpy\q •

Considérons maintenant un élément de o de End F dont la matrice est

pour <D0 et que l'ensemble {(2s, 2p, 2sq); s, p e{ - 1,1}} est globalement

invariant par Og.

V. Autres propriétés des polynômes Qg

précède montre que le point (2, 2, 2) est point fixe
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