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On sait par ailleurs (proposition 1.9) que X divise Pa(0b) ~ Pa*b*- Comme

Pa {ab) z et Pa-ib xj - z on a £ T|. Quitte à composer avec

l'involution (a-1, ô-1), on peut supposer que l'on a s t| 1.

Supposons que les mots uau~l et vbv~l soient réduits. Si u v e9 il
n'y a rien à démontrer. Sinon, supposons que \u \ ^ | u | (où | u | désigne la

longueur de u). On a alors u u'bn avec n ^ 0, la dernière lettre de w'

étant a, si | w' | > 0. Dans ces conditions on a

o(aù) u'bnab~nu'~lvbv~x

d'où

£ P{ab~ nu' ~ ivbv~ 1u' bn) •

Utilisant une nouvelle fois le lemme 3, on obtient que u'~lu bk. L'irréductibilité

de ubv~l implique alors u' u. Ceci montre que o est un auto-

morphisme intérieur.

III. Applications polynomiales laissant X invariant
CARACTÉRISATION DES O TELS QUE Qc 1

On désigne par R un domaine d'intégrité de caractéristique nulle et par
sd l'ensemble des \j/ e (.R[x, y, z])3 tels que X o \}/ X.

L'ensemble sd contient {Oa ; o e aut F}. Il sera commode de considérer

les éléments suivants de aut F:

a =s (b, a) ß (a3 b~l) y (ab, b~l)

Les <ï> correspondants sont

^ z) (y, x, z)

%(x, y, z) (x, y, xy - z)

®y(x, y, z) (z, y, x)

On considérera aussi les applications polynomiales suivantes:

P(x,y, z) (-x, - y, z)

et

0(x, y, z) (~x,y, - z)

Ces applications polynomiales sont également dans jd.

Nous allons montrer que sd est engendré par <Ê>a, p et 0.



ENDOMORPHISMES DE GROUPES LIBRES 161

Lemme 1. Si i|/ (i|/i, xi/2, H/3) appartient à sd, alors on a, pour
i 1, 2, 3, d°\Vi ^ 1.

Démonstration. Si, par exemple, \j/3 était constant, égal à c, on aurait

Vi + ¥2 ~ c\|/i\|/2 x2 + y2 + z2 - xyz - c2

Or, le premier membre de cette expression est réductible dans un corps,
extension convenable de R, alors que le second membre ne l'est pas.

Notons deg\|/ la somme d°\|/j + d°\j/2 + d°\j/3 et posons

«Sf {\|/e deg q/ 3}

Lemme 2. & est le groupe engendré par <3>a, e/1 p.

Démonstration. Appelons les variables Xi,x2,x3 au lieu de x, y, z. Soit

\j/ e L. On a i|//(x) lj + Uj où lj est un polynôme homogène de degré 1 et

Uj e R. On a

3

(lj + Uj)2 — (Il + U\) (l2 + u2)(l3 + U3) x\ + x\ + X3 — X1X2X3
y 1

L'identification des termes de degré 3 donne lj U/XtC/) où ly e R, et x e 9^
et 1- L'identification des termes quadratiques donne alors u{ u2

u3 0, v\ v\ v\ 1.

Il est dès lors facile de se convaincre que \j/ est dans le groupe engendré

par Oa, Oô et p.

Lemme 3. Soit (\j/i, vj/2, \j/3) e sd tel que degij/ > 3. Alors, il
existe o e <a, ß,y>, le groupe engendré par a, ß et y, tel que
deg (00 o \j/) < deg y.

Démonstration. Puisque Oa et Oy sont des transpositions distinctes de
deux composantes, quitte à remplacer y par Oa o y, avec o g < a, y >, on
peut supposer que d°\j/3 ^ d°\\f2 ^ d°\y 1 ^ 1.

Puisque deg\j/ > 3, on a d°\|/3 ^ 2. Or (\j/3 - \|/i\|/2)\|/3 + y \ + y]
x2 + y2 + z2 - xyz. Si l'on avait öf°\|/3 ^ \j/2 on aurait

3 sup(öf°\|/3, d°\\ßi\\f2) -f d°y3 ^ 4

On a donc d°\|/3 fi?°\|/i\|/2, d'où d°\\f3 > d°\\f2. Si l'on avait <i0(\|/3 - \|/i\|/2)
d°\i/3, on aurait 2rf0\|/3 3, donc on a d°(y3 - < d°y3. Ceci

montre que deg o \j/ < degvj/. Ceci achève la démonstration du lemme.
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Théorème 4. sd est le groupe engendré par Oa, Oß, <DY et p.

Démonstration. Il suffit d'appliquer de façon répétitive le lemme

précédent pour se ramener au lemme 2.

Théorème 5. L'ensemble des g e Horn (F, F) tels que Qa 1 est

l'ensemble des automorphismes de F.

Démonstration. Dire que Qa 1 équivaut à dire 00 e sd. Si Oa e jaf, le

lemme 3 permet de montrer l'existence d'un t e < a, ß, y > tel que
Ox o Oa e {0, p}. Mais, en vertu des lemmes II.3 et II.4, on a alors
<Ê>T o Oa id. Il en résulte (théorème II.5) que t o g est un automorphisme,
donc aussi g.

Lemme 6. Si iw désigne l'automorphisme intérieur u -> wuw ~1

de F. On a

ia ßaßyßyaß et ib aiaa

Démonstration. Elle se fait par vérification directe.

Théorème 7. L'ensemble des automorphismes de F est le groupe
engendré par a, ß et y.

Démonstration. Soit g e AutF. Alors Oa e sd. Comme précédemment,
il existe te < a, ß, y > tel que Ox o <ï>a id. Le théorème II. 1 montre alors

t o g est soit un automorphisme intérieur, soit un automorphisme intérieur
composé avec (tf_1,Z?_1), qui n'est autre que (aß)2. Le théorème résulte
alors du lemme précédent.

Remarque. Ce théorème est un résultat ancien de Nielsen [5], [6], mais

la démonstration que nous en donnons ne fait pas appel à la délicate théorie
de la réduction de Nielsen.

IV. Etude des relations Oa ®x et Qa 0

Notons F* l'ensemble des éléments w de F qui sont image d'un générateur

par un automorphisme de F.

Théorème 1. Soit o et t deux endomorphismes de F tels

que a(a),ü(b) et g (ab) soient dans F*. Alors les assertions suivantes

sont équivalentes:
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