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On sait par ailleurs (proposition 1.9) que A divise Pg(gpy — Pgepn. Comme
Pyapy =2 €t Py-1p, = Py-1=xy — 2z on a € = 1. Quitte & composer avec
I’involution (e¢~!, b~1), on peut supposer que 'ona € =1 = 1.

Supposons que les mots uau ~! et vbv ! soient réduits. Si u = v = e, il
n’y a rien a4 démontrer. Sinon, supposons que |u | > |v| (ou | u | désigne la
longueur de ). On a alors u = u’b” avec n # 0, la derniére lettre de u’
étant @, si |u’|> 0. Dans ces conditions on a

c(ab) = u'b"ab—"u’'~lvbv~!
d’ou
4= P(ab‘"u"’ubU'lu’b") .

Utilisant une nouvelle fois le lemme 3, on obtient que ' ~'v = b*. L’irréduc-
tibilité de vbv-! implique alors u’ = v. Ceci montre que ¢ est un auto-
morphisme intérieur.

III. APPLICATIONS POLYNOMIALES LAISSANT A INVARIANT
CARACTERISATION DES 6 TELS QUE Q, = 1

On désigne par R un domaine d’intégrité de caractéristique nulle et par
o/ 1’ensemble des v € (R][x, y, z])3 tels que A o y = A.

L’ensemble «/ contient {®,; c € aut F}. Il sera commode de considérer
les éléments suivants de aut F:

a=(®ba, Pp=@>bl), vy=(@,b ).

Les @ correspondants sont

®,(x, ¥, 2) = (¥ X, 2)

Dy (x, ¥, 2) = (X, 9, Xy — 2)

(I)'y(x: Y, Z) = (Z, s X) .
On considérera aussi les applications polynomiales suivantes:

p(x: Y, Z) = (_ X, _)’: Z)
et

6(x, %2 =(-x5 —2).

Ces applications polynomiales sont également dans .«Z.
Nous allons montrer que ./ est engendré par ®,, @5, ®,, p et 0.
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LEMME 1. Si v = (v, V2, V3) appartient a </, alors on a, pour
i=1,2,3,d%; > 1.

Démonstration. Si, par exemple, s était constant, égal a ¢, on aurait
2 2
Wi+ Wy = cyiwy = X2+ p2 42 - xyz - 2

Or, le premier membre de cette expression est réductible dans un corps,
extension convenable de R, alors que le second membre ne I’est pas.
Notons deg v la somme d°y; + d%y, + d°y; et posons

Y ={ye o; degy = 3}.

LEMME 2. & est le groupe engendré par ®,,®, et p.

Démonstration. Appelons les variables x;, x,, x; au lieu de x, y, z. Soit
yeL.Onavwy;(x)=1/ + u;oul; est un polyndme homogene de degré 1 et
uje R. On a

3
Y G+up?— G+u) e+ w)(s+us) = X7+ x5+ X5 — X103 .
i=1

L’identification des termes de degré 3 donne /; = v;x;;youV; € R, et T € &
et v0,03 = 1. L’identification des termes quadratiques donne alors u; = u,
=u; =0, =0vi=01=1.

Il est des lors facile de se convaincre que y est dans le groupe engendré
par ®,, @5 et p.

LEMME 3. Soit vy = (Y, V., V¥3) € & ftel que degwy > 3. Alors, il
existe o e <o,B,y>, le groupe engendré par o,B et vy, tel que
deg (@, © ) < deg v.

Démonstration. Puisque @, et ®, sont des transpositions distinctes de
deux composantes, quitte & remplacer y par @, © y, avec 6 € <o,y >, on
peut supposer que d%y; > d%y, > d%y; > 1.

Puisque degy >3, on a dy;>2. Or (ys— vy y)ys + w2+ y?
= X%+ y*+ z%> — xyz. Si lon avait dy; # d°y,y, on aurait

3 =sup(d®y;,dy;y;) + dOys > 4.

On a donc d%y3 = d %y, y,, d’ott d%y; > dOy,. Si ’on avait do(y; — v y,)
= d%y;, on aurait 2d%y; = 3, donc on a do(y; — v ;) < dOys;. Ceci
montre que deg ®g o y < deg y. Ceci achéve la démonstration du lemme.
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THEOREME 4. &/ est le groupe engendré par ®,,®;, d, et p.

Démonstration. 11 suffit d’appliquer de fagon répétitive le lemme
précédent pour se ramener au lemme 2.

THEOREME 5. L’ensemble des o € Hom(F,F) tels que Q, =1 est
[’ensemble des automorphismes de F.

Démonstration. Dire que Q, = 1 équivaut a dire &, € .« Si &, € , le
lemme 3 permet de montrer D’existence d’un te€ <a,B,y> tel que
®, 0o &, €{6,p}. Mais, en vertu des lemmes II.3 et II.4, on a alors
@, 0 @, = id. Il en résulte (théoreme I1.5) que T © ¢ est un automorphisme,
donc aussi o©.

LEMME 6. Si i, désigne [lautomorphisme intérieur u — wuw !
de F. Ona

i, = BoaPyByaB et i, = aio.

Démonstration. Elle se fait par vérification directe.

THEOREME 7. L’ensemble des automorphismes de F est le groupe
engendré par o,p et v.

Démonstration. Soit 6 € Aut F. Alors &, € /. Comme précédemment,
il existe T € < a, B,y > tel que ., 0 &, = id. Le théoreme I1.1 montre alors
T 06 est soit un automorphisme intérieur, soit un automorphisme intérieur
composé avec (a~!,b~1), qui n’est autre que (af)?. Le théoréme résulte
alors du lemme précédent.

Remarque. Ce théoréme est un résultat ancien de Nielsen [5], [6], mais
la démonstration que nous en donnons ne fait pas appel a la délicate théorie
de la réduction de Nielsen.

IV. ETUDE DES RELATIONS ®;, = ®, ET O, = 0

Notons F* ’ensemble des éléments w de F qui sont image d’un générateur
par un automorphisme de F.

THEOREME 1. Soit o et 1 deux endomorphismes de F tels
que o(a),c(b) et o(ab) soient dans F*. Alors les assertions suivantes

sont équivalentes.:
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