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Proposition 10. Si g e Aut(F), alors detO^ ± 1.

Démonstration. Différentions la relation <Ê>a-i o 0G id et prenons les

déterminants. On obtient

det(0;_i o Oa)det(<E>;) 1

Comme ces déterminants sont des polynômes à coefficients entiers, ils sont

nécessairement constants, égaux à ± 1.

Lemme 11. Pour tout g e Horn (F, F)» on a ôo(0, 0, 0) 0 ou 1.

Démonstration. Il suffit de considérer cp e Horn (F, SL(2i C)) tel que

<P(Û)

Nous donnerons plus loin un résultat plus précis que celui-ci.

"(-1 i) a v(b) -C «)

Proposition 12. Si o e Aut F, on a Qc 1.

Démonstration. Ceci résulte de la proposition 8 et du lemme 11.

II. Détermination du noyau de O

Comme l'ont observé Kolar et Ali [3], les polynômes de Chebyschev
interviennent naturellement dans ce contexte.

Considérons les deux suites de polynômes {tn}n 6 z et {un}n e z satisfaisant
la même relation de récurrence

tn + i(x) + 4-i(*) xtn(x)

Un + l(x) + Un-x(x) XUn{x)

avec les conditions initiales

t0(x) 2 h(x) x, u0(x) 0 ui(x) 1

Il est facile de vérifier les faits suivants:

t~n tn d®tn | n |

U-n - un d°un n - 1 si n ^ 1

4(2 cos cp) 2cos wp

sin n(p
un{2 cos cp)

sin cp

In (-Y) (-Y)
— 1 (-Y) •
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L'intérêt pour nous de ces polynômes vient du lemme suivant dont la
démonstration par récurrence est immédiate.

Lemme 1. Si A est une matrice carrée telle que A2 xA - 1, alors,

pour tout ne Z, on a

An un(x)A - un_i(x)

et, si A est une matrice 2 x 2, tr^4" tn{x).

Lemme 2. Soit w am^bn^am^bn^ • • • am/<bn/< un élément de F. On

suppose que, si k > 0, on a mxm2 • • • mknx • • • nk =£ 0, (si k 0,

par convention w e). Alors d°zPw k, (où d°z désigne le degré par
rapport à la variable z).

Démonstration. Elle se fait par récurrence sur k. Le lemme est vrai pour
k 0. Supposons-le vrai pour k < / - 1.

Soit w am^bn^am^bn2 - - - am'bni wxamibni. On a, si Tq (x, y, z),

<p(w) (p(H>!)[wm/(x)(p(a) - umi-X(x)]\uni(y)q{b) - uni.x(y)]

La trace de (p(w) est donc combinaison linéaire à coefficients polynômiaux en

x et y des traces de (^{wxab), (p(witf), (p(wxZ?) et (p(wi). Puisque, pour calculer
des traces de produits, on peut opérer des permutations circulaires, l'hypothèse
de récurrence montre que les traces de (p(witf), (p(wxb) et (p(wi) ont un degré

en z inférieur ou égal à / - 1.

Ainsi donc le degré en z du polynôme

tr (p (w) - tr (<p (w, ab)) um, (x) (y)

est strictement inférieur à /.

Répétant le même argument aux autres facteurs de w, on obtient que le

degré en z du polynôme

/

tr <p(ve) - tr(<p[(aô)']) II
j= i

est au plus / - 1.

Mais tr (p(ab)1 //(z) est un polynôme en z de degré /. Ceci achève la
démonstration.

Lemme 3. Si w e F est tel que Pw az(a e Z), alors a 1 et

l'on a w uabu_1 ou w ua~lb~lu~l pour un u e F.
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Démonstration. Si a 0, le lemme précédent montre que la réduction

cyclique de w est e, am ou bn. Dans aucun de ces cas on obtient Pw 0.

Donc a =£ 0.

Le lemme précédent montre alors que la réduction cyclique de w est am bn

(avec mn ^ 0). Alors le lemme 1 montre que l'on a

Pw fc y, z) um(x)un(y)z - yum.l(x)un(y) - xum(x)un_i(y)

+ 2um_l(x)un-i(y)

Or um(x)un{y) a implique \m\ \n\ l et a mn. Si mn - 1, alors
l'un des deux termes yum_i(x)un{y) ou xum(x)u„~i(y) reste seul, ce qui est

impossible. Donc m n ±1, d'où le lemme.

Lemme 4. Soit w e F. Alors
1 °) Si Pw qlx, on a a 1 et w uau ~1 ou w ua~îu~1.

2°) Si Pw ay, on a a=l et w ubu~l ou w ub~1u~l.

Démonstration. Supposons que l'on ait Pw ax. Considérons
l'élément o g Horn (F, F) ainsi défini: g (a) ab, a(b) b~l. On a

Oa(x, y, z) (z, y, x), donc, en vertu de la proposition 1.3, on a Pa{w)(x, y, z)

Pw o 0G (x, y, z) az. On en déduit (lemme précédent) que a 1 et que
o (w) uabu ~1 ou o (w) ua~lb~lu~l. Mais o est un isomorphisme :

o ~1 (a) ab, o ~1 (b) b ~1. On a donc w g ~1 (u) aG ~1 (u ~1 ou
w G~l{u)b~la~1bG~l{u~l).

Pour démontrer la seconde assertion, on utilise de la même façon l'isomor-
phisme (a'1, ab).

Théorème 5. Pour o g Horn (F, F) les propriétés suivantes sont
équivalentes:

1°) Oa id

2°) o est soit un automorphisme intérieur, soit un automorphisme
intérieur composé avec Vinvolution (a ~1, b ~1

Démonstration. Il est clair que la seconde propriété implique la première.
Supposons que l'on ait 0G id. Il résulte du lemme précédent que l'on a

g (a) ua£u~1 avec s ± 1 et u e F
et

G(b) vb^v~l avec ri ± 1 et ueF.
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On sait par ailleurs (proposition 1.9) que X divise Pa(0b) ~ Pa*b*- Comme

Pa {ab) z et Pa-ib xj - z on a £ T|. Quitte à composer avec

l'involution (a-1, ô-1), on peut supposer que l'on a s t| 1.

Supposons que les mots uau~l et vbv~l soient réduits. Si u v e9 il
n'y a rien à démontrer. Sinon, supposons que \u \ ^ | u | (où | u | désigne la

longueur de u). On a alors u u'bn avec n ^ 0, la dernière lettre de w'

étant a, si | w' | > 0. Dans ces conditions on a

o(aù) u'bnab~nu'~lvbv~x

d'où

£ P{ab~ nu' ~ ivbv~ 1u' bn) •

Utilisant une nouvelle fois le lemme 3, on obtient que u'~lu bk. L'irréductibilité

de ubv~l implique alors u' u. Ceci montre que o est un auto-

morphisme intérieur.

III. Applications polynomiales laissant X invariant
CARACTÉRISATION DES O TELS QUE Qc 1

On désigne par R un domaine d'intégrité de caractéristique nulle et par
sd l'ensemble des \j/ e (.R[x, y, z])3 tels que X o \}/ X.

L'ensemble sd contient {Oa ; o e aut F}. Il sera commode de considérer

les éléments suivants de aut F:

a =s (b, a) ß (a3 b~l) y (ab, b~l)

Les <ï> correspondants sont

^ z) (y, x, z)

%(x, y, z) (x, y, xy - z)

®y(x, y, z) (z, y, x)

On considérera aussi les applications polynomiales suivantes:

P(x,y, z) (-x, - y, z)

et

0(x, y, z) (~x,y, - z)

Ces applications polynomiales sont également dans jd.

Nous allons montrer que sd est engendré par <Ê>a, p et 0.
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