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PROPOSITION 10. Si o € Aut(F), alors det®,= = l.

Démonstration. Différentions la relation ®;-1 © @, = id et prenons les
déterminants. On obtient

det(®’_, © @;)det (@) = 1.

Comme ces déterminants sont des polyndmes a coefficients entiers, ils sont
nécessairement constants, égaux a =+ 1.

LEMME 11. Pour tout o € Hom(F,F), ona Q,(0,0,0) =0 ou 1.
Démonstration. 11 suffit de considérer ¢ € Hom(F, SL(2, C)) tel que

@ = 0 1et(b)—0i
cpa)—(_l o) ® —(Z_ o)'

Nous donnerons plus loin un résultat plus précis que celui-ci.

PROPOSITION 12. Si ce AutF, ona Q,=1.

Démonstration. Ceci résulte de la proposition 8 et du lemme 11.
II. DETERMINATION DU NOYAU DE @

Comme I’ont observé Kolar et Ali [3], les polyndmes de Chebyschev
interviennent naturellement dans ce contexte.

Considérons les deux suites de polyndmes {¢,},cz €t {u,} .z satisfaisant
la méme relation de récurrence

biv1(X) + 11 (X) = x1,(x)
Un+1(X) + Up—1(X) = XUp(X)
avec les conditions initiales
h(x)=2, Hx=x, ux=0, wuyx=1.
I1 est facile de vérifier les faits suivants:
tp=1t,, d, =|n]
U pn=—Uy, duy=n-1 si nx1
(2 cos @) = 2 cos nop

sin n@

U,(2cos ) =
sin @

(X)) = xu, (x) — 2un—1(x) .
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L’intérét pour nous de ces polyndmes vient du lemme suivant dont la
démonstration par récurrence est immédiate.

LEMME 1. Si A est une matrice carrée telle que A? = xA — 1, alors,
pour tout neZ, ona

A" = u,(X)A — u,_1(x)

et, si A est une matrice 2 X 2,tr A" = t,(x).

LEMME 2. Soit w = a™b™a™b" .- a™b" un élément de F. On
suppose que, si k>0, on a mmy---mn - n#0, (si k=0,
par convention w =e). Alors d P, =k, (ou d, désigne le degré par
rapport a la variable z).

Démonstration. Elle se fait par récurrence sur k. Le lemme est vrai pour
k = 0. Supposons-le vrai pour £ </ — 1.

Soit w = a™brigmp"2 -+ g™b™ = wia™b™. On a, si To = (x, y, 2),

O(W) = @(W1) [, (X) 9 (@) — U~ 1(X)] [, () @ (D) — Un,—1 (P)] -

La trace de ¢ (w) est donc combinaison linéaire a coefficients polyndmiaux en
x et y des traces de @ (w,ab), ¢ (wia), @ (w;b) et ¢ (w;). Puisque, pour calculer
des traces de produits, on peut opérer des permutations circulaires, I’hypotheése
de récurrence montre que les traces de ¢ (w;a), ¢ (w,b) et @(w;) ont un degré
en z inférieur ou égal a / — 1.

Ainsi donc le degré en z du polyndme

tr @(w) — tr (@ (wyab)) Uy, (x) un, (»)

est strictement inférieur a /.
Répétant le méme argument aux autres facteurs de w, on obtient que le
degré en z du polyndme

!
tr o(w) — tr (¢ [(@b)']) T [etm, (%) e, ()]
j=1
est au plus / — 1.
Mais tr ¢ (ab)’ = 1;(z) est un polyndme en z de degré /. Ceci achéve la
démonstration.

LEMME 3. Si weF est tel que P, =oaz(ae€Z), alors a=1 et
l'ona w=uabu=! ou w=ua"'b-'u-!' pour un ue€F.
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Démonstration. Si o = 0, le lemme précédent montre que la réduction
cyclique de w est e, a™ ou b”. Dans aucun de ces cas on obtient P, = 0.
Donc a # 0.

Le lemme précédent montre alors que la réduction cyclique de w est a”b”
(avec mn # 0). Alors le lemme 1 montre que ’on a

P, 3, 2) = un (XD Un (¥)Z — Y1 (XD tn (¥) — Xty () tUy— 1 ()
+ 2Upm 1 () U1 (Y) .
Or 4, (x)u,(y) = o implique |m | = |n| =1et a = mn. Si mn = — 1, alors

I’un des deux termes yu,, _;(x) u,(¥) ou xu,(x)u,_(y) reste seul, ce qui est
impossible. Donc m = n = + 1, d’ou le lemme.

LEMME 4. Soit weF. Alors
1) Si P,=o0x, ona a=1 e w=wuau-! ou w=ua‘'u-"'.

2°y Si P,=ay, ona o=1 et w=ubu"! ou w=ub-1u-1.

Démonstration. Supposons que ['on ait P, = ox. Considérons
I’¢lément o € Hom(F, F) ainsi défini: o(@) = ab, o(b)=5b"1. On a
@, (x, ¥, 2) = (z, ¥, x), donc, en vertu de la proposition 1.3, on a P,y (X, ¥, 2)
= P, 0®s(x, y, 2) = 0z. On en déduit (lemme précédent) que o = 1 et que
c(W) =uabu-! ou o(w) =wua"'b-'u-!. Mais 6 est un isomorphisme:
c~ Y@ =ab, o-'(b)=b"'. On a donc w=o0"'(was (- ou
w=oc"Ywb - la-lbo(u-1).

Pour démontrer la seconde assertion, on utilise de la méme fagon 1’isomor-
phisme (a1, ab).

THEOREME 5. Pour o € Hom(F,F) les propriétés suivantes sont
équivalentes.

1°) @, = id

2°) © est soit un automorphisme intérieur, soit un automorphisme
intérieur composé avec ’involution (a-!,b-1).

Démonstration. 1l est clair que la seconde propriété implique la premiére.
Supposons que l’on ait ®, = id. Il résulte du lemme précédent que ’on a

c(@=uwua*u-! avec e=+letuekF

el

o) =vbw-! avec MmM=xletvekF.
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On sait par ailleurs (proposition 1.9) que A divise Pg(gpy — Pgepn. Comme
Pyapy =2 €t Py-1p, = Py-1=xy — 2z on a € = 1. Quitte & composer avec
I’involution (e¢~!, b~1), on peut supposer que 'ona € =1 = 1.

Supposons que les mots uau ~! et vbv ! soient réduits. Si u = v = e, il
n’y a rien a4 démontrer. Sinon, supposons que |u | > |v| (ou | u | désigne la
longueur de ). On a alors u = u’b” avec n # 0, la derniére lettre de u’
étant @, si |u’|> 0. Dans ces conditions on a

c(ab) = u'b"ab—"u’'~lvbv~!
d’ou
4= P(ab‘"u"’ubU'lu’b") .

Utilisant une nouvelle fois le lemme 3, on obtient que ' ~'v = b*. L’irréduc-
tibilité de vbv-! implique alors u’ = v. Ceci montre que ¢ est un auto-
morphisme intérieur.

III. APPLICATIONS POLYNOMIALES LAISSANT A INVARIANT
CARACTERISATION DES 6 TELS QUE Q, = 1

On désigne par R un domaine d’intégrité de caractéristique nulle et par
o/ 1’ensemble des v € (R][x, y, z])3 tels que A o y = A.

L’ensemble «/ contient {®,; c € aut F}. Il sera commode de considérer
les éléments suivants de aut F:

a=(®ba, Pp=@>bl), vy=(@,b ).

Les @ correspondants sont

®,(x, ¥, 2) = (¥ X, 2)

Dy (x, ¥, 2) = (X, 9, Xy — 2)

(I)'y(x: Y, Z) = (Z, s X) .
On considérera aussi les applications polynomiales suivantes:

p(x: Y, Z) = (_ X, _)’: Z)
et

6(x, %2 =(-x5 —2).

Ces applications polynomiales sont également dans .«Z.
Nous allons montrer que ./ est engendré par ®,, @5, ®,, p et 0.
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