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Cet article répond a certaines questions posées dans [8]. Pour la commodité
du lecteur, dans la premiére partie, les résultats de [8] sont repris, et dans
certains cas précisés.

I. INTRODUCTION

On désigne dans les sections 1, 2, 3, 4 et 5 par F le groupe libre
a deux générateurs, ¢ et b. On note tr A la trace de la matrice carrée A.
Si ¢ est un homomorphisme de F dans SL(2,C), on note T¢ le triplet
(tr ¢ (), tr 9(b), tr ¢ (ab)).

L’image de T est C3® tout entier: pour s’en persuader, il suffit de

L x -1 0 A
considérer les ¢ tels que ¢(a) = et p(b) = .
(o)=L

Si o et ¢’ sont des endomorphismes de F, on pose 66’ =6" 0 ¢. On
identifiera un élément ¢ de Hom(F, F) au couple (c(a), c(b)) € F X F.

Si w est un élément de F, on désignera par w 1’élément de Z2, image de
w par ’homomorphisme d’abélianisation. Si ¢ est un endomorphisme de F,
il définit, par abélianisation, un endomorphisme de Z?2 dont nous désignerons
par ¢ la matrice transposée. En d’autres termes, ¢ est la matrice carrée
indexée par {a, b} X {a, b} dont les coefficients d’interprétent de la facon
suivante: si u et v appartiennent a {a, b}, 6, , = somme des puissances de la
lettre v dans o(x). On a évidemment (66”)” = 6o’.

On note A le polyndme A(x, ¥, z) = x? + y? + z2 — xyz — 4. On sait que,
pour ¢ € Hom (F, SL(2, C)), A(T) est nul si et seulement si ¢ (a) et ¢(b) ont
une direction propre commune.

LEMME 1. Soit A et B deux éléments de SL(2,C). On a
AB + BA =tr(AB) — (trA)(trB) + AtrB + BtrA .

Démonstration. Le théoréme de Cayley-Hamilton donne les relations
suivantes:

A l=trA - A
B-'=trB—-B
(AB)? = ABtr(AB) — 1.

Par ailleurs, on a
BA = A-'ABABB !
=A-'(ABtr(AB) —1)B~!

=tr(AB) — (trA— A)(tr B—- B)
=tr(AB) — (trA)(trB) + AtrB + BirA — AB .
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LEMME 2. Soit w e F. Il existe alors quatre polynomes,
PP ellx,yz2 (j=1,23,4),
tels que, pour tout ¢ € Hom(F, SL(2,C)), on ait
o(w) = P (To) + PP (T9)o(a) + PP (To)o(b) + P (Te)¢(ab) -

Démonstration. Posons, pour simplifier, @) =A, ©b) =B et
To = (x, ¥, z). On a alors, en vertu du théoréme de Cayley-Hamilton et du
lemme précédent,

A2 =xA4A — 1
Al =x-A
B?=yB -1
B-'=y—-B

BA=z—-xy+yA + xB - AB.
En outre,

ABA = A(z—xy+yA + xB — AB)
= A[z—yA -1+ xA~'B]
= —-y+zA+ xB.

Le lemme résulte alors de ces formules par récurrence sur la longueur de w,
supposé réduit.

PROPOSITION 3. Soit we F. Il existe alors un unique polynome
P, e Zlx, y,z] tel que, pour tout ¢ € Hom(F, SL(2,C)), on ait

tr o(w) = P,(To) .
Démonstration. L’existence résulte du lemme précédent:
tr o(w) = 2P (To) + P (To) tr o(@) + P (To) tro(b) + P (To) tr p(ab) .

L’unicité résulte de la surjectivité de 7.

Cette proposition, avec une démonstration légérement différente, figure
dans [1].

THEOREME 4. Soit o € Hom(F,F). Il existe alors un unique
®, € (Z[x, y, z])3 tel que, pour tout ¢ € Hom(F, SL(2,C)) on ait

T(9 © 6) = O,(To) .

Démonstration. Cela résulte simplement de la proposition précédente,
appliquée aux éléments @ (a), ¢ (b) et ¢(ab) de F.
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PROPOSITION 5. Quels que soient o, et o, dans Hom(F,F), on a
D5, = P, © Dy, .
Démonstration. On a
T(¢ © 62 0 61) = @, (T(¢ © 62)) = @5, © D, (TY) ,

d’ou le résultat a cause de I'unicité de ®@;,,,.

PROPOSITION 6. Quels que soient weF et o € Hom(F,F), on a

Po(w) = Pw o (Do s

Démonstration. Soit ¢’ I’élément de Hom (F, F) ainsi défini: ¢'(a) = w,
c’(b) = b. Alors P, et P;,, sont les premieres composantes de @, et de @,
respectivement. Or ®,., = @5, 0 ®,, d’ou le résultat.

THEOREME 7. Soit o € Hom(F,F). Il existe alors un polynome
Os € Zix, y,z] tel que I'on ait ) o ®; =X - Q.

Démonstration. Soit ¢ € Hom(F, SL(2, C)) tel que A(Tp) = 0. Alors
¢ (a) et @ (b) ont une direction propre commune. Il en est donc de méme de

¢ (o (a)) et de ¢ (o (d)). Par suite A(Q;(7T9)) = 0.
L’existence de Q, avait ét€ conjecturée dans [3] et prouvée dans [8].

PROPOSITION 8. Si o, et o, sont deux éléments de Hom(F, F)
on a

Q01°2 = QG?. ) ch © (Dﬁz :
Démonstration. On a

}\‘Oq)()'lcz:()\‘O@Gl)O@Gz:(}\‘.Qﬁl)OQGQ_: )\‘.QGZ'Q(I]O(DGQ“

PROPOSITION 9. Si w et w’' sont deux éléments de F tels que

4

w =w’', alors P, — P, est divisible par \.

Démonstration. Si ¢ est un homomorphisme de F dans SL (2, C) tel que
¢(a) et ¢(b) ont une direction propre commune, on a P,(Tg) = P, (Ty),
comme on peut le voir en trigonalisant simultanément ¢ (a) et ¢ (b). Par suite
le polyndme P, — P,- s’annule sur les zéros de A.

Soit Q la variété des zéros de A. Le théoréme 7 dit que Q est stable par
tout ®,. La proposition 9 dit que la restriction de ®, & Q ne dépend que de
’abélianisé ¢ de o.
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PROPOSITION 10. Si o € Aut(F), alors det®,= = l.

Démonstration. Différentions la relation ®;-1 © @, = id et prenons les
déterminants. On obtient

det(®’_, © @;)det (@) = 1.

Comme ces déterminants sont des polyndmes a coefficients entiers, ils sont
nécessairement constants, égaux a =+ 1.

LEMME 11. Pour tout o € Hom(F,F), ona Q,(0,0,0) =0 ou 1.
Démonstration. 11 suffit de considérer ¢ € Hom(F, SL(2, C)) tel que

@ = 0 1et(b)—0i
cpa)—(_l o) ® —(Z_ o)'

Nous donnerons plus loin un résultat plus précis que celui-ci.

PROPOSITION 12. Si ce AutF, ona Q,=1.

Démonstration. Ceci résulte de la proposition 8 et du lemme 11.
II. DETERMINATION DU NOYAU DE @

Comme I’ont observé Kolar et Ali [3], les polyndmes de Chebyschev
interviennent naturellement dans ce contexte.

Considérons les deux suites de polyndmes {¢,},cz €t {u,} .z satisfaisant
la méme relation de récurrence

biv1(X) + 11 (X) = x1,(x)
Un+1(X) + Up—1(X) = XUp(X)
avec les conditions initiales
h(x)=2, Hx=x, ux=0, wuyx=1.
I1 est facile de vérifier les faits suivants:
tp=1t,, d, =|n]
U pn=—Uy, duy=n-1 si nx1
(2 cos @) = 2 cos nop

sin n@

U,(2cos ) =
sin @

(X)) = xu, (x) — 2un—1(x) .
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