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POLYNÔMES ASSOCIÉS AUX ENDOMORPHISMES

DE GROUPES LIBRES

par Jacques Peyrière, Wen Zhi-Ying et Wen Zhi-Xiong

Abstract. If a is an endomorphism of F, the free group generated

by a and b, there exists a unique polynomial map Oa from C3 to C3, with

integral coefficients, such that, for any representation (p of F in SL(2, C),

one has

(tr(p(o(#)), tr(p(o(Z?)), tr cp(o (#£))) Oc(tr(p(tf), trcp(Z?), tr(p(<zZ?))

The following relation holds: Oa>0 0 Oö o Oö,. The kernel of O is shown

to be generated by the inner automorphisms of F and the involution which

takes a to a~l and b to b~l. If X denotes the polynomial x2 + y2 + z2

- xyz - 4, then loOö factorizes under the form X • Qa, where Qa is a

polynomial with integral coefficients. Among other properties of Q0, it is

proved that o is an automorphism of E if and only if Qc equals 1 identically.

The case of a free group with more than two generators is also studied but,

in this case, results are less complete.

Résumé. A chaque endomorphisme o du groupe libre F engendré par a

et b on associe une unique application polynomiale Oc, à coefficients entiers,
de C3 dans C3 telle que, pour toute représentation cp de F dans SL(2, C)

on ait

(tr (p (o a)),tr <p (o (b)), tr (p (a (ab))) 4>a (tr (p (a), tr (p (b), tr (p (ab))

L'application O est un anti-homomorphisme du monoïde des endomorphismes
de F dans le monoïde des applications polynomiales de C3 dans C3, muni de

la composition. Diverses propriétés de O sont établies. En particulier, son

noyau est caractérisé. En outre, si X désigne le polynôme x2 + y2 + z2

- xyz - 4, le polynôme X o O se factorise sous la forme X • Qa où Qa est un
polynôme à coefficients entiers. Il est établi, entre autre, que g est un
automorphisme de F si et seulement si Qa est identiquement égal à 1. Le cas

d'un groupe libre à plus de deux générateurs est également abordé, mais avec
des résultats moins complets.

AMS Classification: 20E05 - 20M05 - 16R99 - 15A24.
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Cet article répond à certaines questions posées dans [8]. Pour la commodité

du lecteur, dans la première partie, les résultats de [8] sont repris, et dans

certains cas précisés.

I. Introduction

On désigne dans les sections 1, 2, 3, 4 et 5 par F le groupe libre
à deux générateurs, a et b. On note tr^4 la trace de la matrice carrée A.
Si cp est un homomorphisme de F dans SL(2, C), on note Fcp le triplet
(tr cp (a), tr cp (b), tr cp {ab)).

L'image de T est C3 tout entier: pour s'en persuader, il suffit de

(x - 1\ / 0 X\
considérer les cp tels que cp(a) et cp(Z?)

VI o ; l-X-1 y)
Si o et g' sont des endomorphismes de F, on pose og' g'og. On

identifiera un élément o de Horn (F, F) au couple {ü(a), (5(b)) e F x F.
Si w est un élément de F, on désignera par w l'élément de Z2, image de

w par l'homomorphisme d'abélianisation. Si o est un endomorphisme de F,
il définit, par abélianisation, un endomorphisme de Z2 dont nous désignerons

par ô la matrice transposée. En d'autres termes, g est la matrice carrée

indexée par {a, b) x {a, b) dont les coefficients d'interprètent de la façon
suivante: si u et v appartiennent à {a, b}, oU)U somme des puissances de la
lettre v dans a(u). On a évidemment (oo')~ gg'.

On note X le polynôme X(x, y, z) x2 + y2 + z2 - xyz - 4. On sait que,

pour cp e Horn (F, SL{2, C)), X(Fcp) est nul si et seulement si (p (a) et cp (Z?) ont

une direction propre commune.

Lemme 1. Soit A et B deux éléments de SL{2, C). On a

AB + BA tr(^4F) - (tr^4)(trF) + Atx B + B\x A

Démonstration. Le théorème de Cayley-Hamilton donne les relations

suivantes :

A ~1 tr A - A
B ~1 tr B - B

(AB)2 AB tr (AB) - 1

Par ailleurs, on a

BA A~lABABB-1
A~l{ABXx(AB)- 1)5-'
tr (AB)-{tv A - A)(tïB - B)
Xt{AB) - (tr A)(tr B)+ + BXrA - AB
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Lemme 2. Soit w e F. Il existe alors quatre polynômes,

P'J' e Z[x, y,z](J1» 2, 3, 4)

tels que, pour tout (p e Horn (F, SL (2, C)), on ait

rp(vv) P^(T<p) + P(„2,(7ïp)<p(a) + P(H3)(7<p)<p(Ô) + P\t](T<y)<y(ab)

Démonstration. Posons, pour simplifier, cp(a) A, (p (b) B et

7q> (x,y, z). On a alors, en vertu du théorème de Cayley-Hamilton et du

lemme précédent,

A2 xA — 1

A-1 x — A
B2 yB - 1

B-1 y - B
BA z - xy + yA + xB - AB

En outre,

ABA A (z - xy + yA + xB - AB)
A[z-yA~l+xA~lB]
- y + zA + xB

Le lemme résulte alors de ces formules par récurrence sur la longueur de w,

supposé réduit.

Proposition 3. Soit we F. Il existe alors un unique polynôme
Pw e Z[xs y, z] tel que, pour tout (p e Horn (F, SL(2, C)), on ait

trcp(w) Pw(F(p)

Démonstration. L'existence résulte du lemme précédent:

tr<p(w) 2P^(m + P(w2>(7cp)tr<p(fl) + P(w3)(7(p) tr <p(ô) + P(u4)(P(p) tr (p(aô)

L'unicité résulte de la surjectivité de T.

Cette proposition, avec une démonstration légèrement différente, figure
dans [1].

Théorème 4. Soit o e Hom{F, F). Il existe alors un unique
3>a g (Z[x, y, z])3 tel que, pour tout cp e Hom (F, SL(2, C)) on ait

F((p o o) Oc(7tp)

Démonstration. Cela résulte simplement de la proposition précédente,
appliquée aux éléments (p (a), cp(Z?) et cp (ab) de F.
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Propositions. Quels que soient a { et o2 dans Hom(F,F), on a

^al02 00l o o02

Démonstration. On a

r((p o a2 o oi) oai(r(cp o o2)) oGl o oa2(r(p),

d'où le résultat à cause de l'unicité de Oai02.

Proposition 6. Quels que soient w eF et g e Hom(F, F), on a

Fo(w) Pw 0 •

Démonstration. Soit g' l'élément de Horn (F, F) ainsi défini: g'(a) w,
o'{b) b. Alors Pw et PG(W) sont les premières composantes de <hG' et de 0G'G

respectivement. Or 0G'G <Ev o Og, d'où le résultat.

Théorème 7. Soit g e Horn (F, F). Il existe alors un polynôme
QG g Z[x, y, z] tel que l'on ait X o Oa X • Q0.

Démonstration. Soit (p e Hom(F, SL(2, C)) tel que X(F(p) 0. Alors
(p (a) et (p (Z?) ont une direction propre commune. Il en est donc de même de

cp(o(a)) et de (p(o(Z?)). Par suite X((p0(Fcp)) 0.

L'existence de Qa avait été conjecturée dans [3] et prouvée dans [8].

Proposition 8. Si oi et o2 sont deux éléments de Horn (F, F)
on a

Qci02 ÔC2 * ôo 1
° ^02 •

Démonstration. On a

X o o0l02 (X O 0G1) O <DG2 (X • gGl) O OG2 X ' QG2 ' QGx O d>02

Proposition 9. Si w et w' sont deux éléments de F tels que

w w alors Pw - PW' est divisible par X.

Démonstration. Si (p est un homomorphisme de F dans SL(2, C) tel que

cp(tf) et (p(b) ont une direction propre commune, on a Pw(T(p) PW'(T(p),

comme on peut le voir en trigonalisant simultanément (p (a) et cp(Z?). Par suite

le polynôme Pw - Pw> s'annule sur les zéros de X.

Soit Q la variété des zéros de X. Le théorème 7 dit que Q est stable par
tout Og La proposition 9 dit que la restriction de Og à Q ne dépend que de

l'abélianisé g de o.
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Proposition 10. Si g e Aut(F), alors detO^ ± 1.

Démonstration. Différentions la relation <Ê>a-i o 0G id et prenons les

déterminants. On obtient

det(0;_i o Oa)det(<E>;) 1

Comme ces déterminants sont des polynômes à coefficients entiers, ils sont

nécessairement constants, égaux à ± 1.

Lemme 11. Pour tout g e Horn (F, F)» on a ôo(0, 0, 0) 0 ou 1.

Démonstration. Il suffit de considérer cp e Horn (F, SL(2i C)) tel que

<P(Û)

Nous donnerons plus loin un résultat plus précis que celui-ci.

"(-1 i) a v(b) -C «)

Proposition 12. Si o e Aut F, on a Qc 1.

Démonstration. Ceci résulte de la proposition 8 et du lemme 11.

II. Détermination du noyau de O

Comme l'ont observé Kolar et Ali [3], les polynômes de Chebyschev
interviennent naturellement dans ce contexte.

Considérons les deux suites de polynômes {tn}n 6 z et {un}n e z satisfaisant
la même relation de récurrence

tn + i(x) + 4-i(*) xtn(x)

Un + l(x) + Un-x(x) XUn{x)

avec les conditions initiales

t0(x) 2 h(x) x, u0(x) 0 ui(x) 1

Il est facile de vérifier les faits suivants:

t~n tn d®tn | n |

U-n - un d°un n - 1 si n ^ 1

4(2 cos cp) 2cos wp

sin n(p
un{2 cos cp)

sin cp

In (-Y) (-Y)
— 1 (-Y) •
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L'intérêt pour nous de ces polynômes vient du lemme suivant dont la
démonstration par récurrence est immédiate.

Lemme 1. Si A est une matrice carrée telle que A2 xA - 1, alors,

pour tout ne Z, on a

An un(x)A - un_i(x)

et, si A est une matrice 2 x 2, tr^4" tn{x).

Lemme 2. Soit w am^bn^am^bn^ • • • am/<bn/< un élément de F. On

suppose que, si k > 0, on a mxm2 • • • mknx • • • nk =£ 0, (si k 0,

par convention w e). Alors d°zPw k, (où d°z désigne le degré par
rapport à la variable z).

Démonstration. Elle se fait par récurrence sur k. Le lemme est vrai pour
k 0. Supposons-le vrai pour k < / - 1.

Soit w am^bn^am^bn2 - - - am'bni wxamibni. On a, si Tq (x, y, z),

<p(w) (p(H>!)[wm/(x)(p(a) - umi-X(x)]\uni(y)q{b) - uni.x(y)]

La trace de (p(w) est donc combinaison linéaire à coefficients polynômiaux en

x et y des traces de (^{wxab), (p(witf), (p(wxZ?) et (p(wi). Puisque, pour calculer
des traces de produits, on peut opérer des permutations circulaires, l'hypothèse
de récurrence montre que les traces de (p(witf), (p(wxb) et (p(wi) ont un degré

en z inférieur ou égal à / - 1.

Ainsi donc le degré en z du polynôme

tr (p (w) - tr (<p (w, ab)) um, (x) (y)

est strictement inférieur à /.

Répétant le même argument aux autres facteurs de w, on obtient que le

degré en z du polynôme

/

tr <p(ve) - tr(<p[(aô)']) II
j= i

est au plus / - 1.

Mais tr (p(ab)1 //(z) est un polynôme en z de degré /. Ceci achève la
démonstration.

Lemme 3. Si w e F est tel que Pw az(a e Z), alors a 1 et

l'on a w uabu_1 ou w ua~lb~lu~l pour un u e F.
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Démonstration. Si a 0, le lemme précédent montre que la réduction

cyclique de w est e, am ou bn. Dans aucun de ces cas on obtient Pw 0.

Donc a =£ 0.

Le lemme précédent montre alors que la réduction cyclique de w est am bn

(avec mn ^ 0). Alors le lemme 1 montre que l'on a

Pw fc y, z) um(x)un(y)z - yum.l(x)un(y) - xum(x)un_i(y)

+ 2um_l(x)un-i(y)

Or um(x)un{y) a implique \m\ \n\ l et a mn. Si mn - 1, alors
l'un des deux termes yum_i(x)un{y) ou xum(x)u„~i(y) reste seul, ce qui est

impossible. Donc m n ±1, d'où le lemme.

Lemme 4. Soit w e F. Alors
1 °) Si Pw qlx, on a a 1 et w uau ~1 ou w ua~îu~1.

2°) Si Pw ay, on a a=l et w ubu~l ou w ub~1u~l.

Démonstration. Supposons que l'on ait Pw ax. Considérons
l'élément o g Horn (F, F) ainsi défini: g (a) ab, a(b) b~l. On a

Oa(x, y, z) (z, y, x), donc, en vertu de la proposition 1.3, on a Pa{w)(x, y, z)

Pw o 0G (x, y, z) az. On en déduit (lemme précédent) que a 1 et que
o (w) uabu ~1 ou o (w) ua~lb~lu~l. Mais o est un isomorphisme :

o ~1 (a) ab, o ~1 (b) b ~1. On a donc w g ~1 (u) aG ~1 (u ~1 ou
w G~l{u)b~la~1bG~l{u~l).

Pour démontrer la seconde assertion, on utilise de la même façon l'isomor-
phisme (a'1, ab).

Théorème 5. Pour o g Horn (F, F) les propriétés suivantes sont
équivalentes:

1°) Oa id

2°) o est soit un automorphisme intérieur, soit un automorphisme
intérieur composé avec Vinvolution (a ~1, b ~1

Démonstration. Il est clair que la seconde propriété implique la première.
Supposons que l'on ait 0G id. Il résulte du lemme précédent que l'on a

g (a) ua£u~1 avec s ± 1 et u e F
et

G(b) vb^v~l avec ri ± 1 et ueF.
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On sait par ailleurs (proposition 1.9) que X divise Pa(0b) ~ Pa*b*- Comme

Pa {ab) z et Pa-ib xj - z on a £ T|. Quitte à composer avec

l'involution (a-1, ô-1), on peut supposer que l'on a s t| 1.

Supposons que les mots uau~l et vbv~l soient réduits. Si u v e9 il
n'y a rien à démontrer. Sinon, supposons que \u \ ^ | u | (où | u | désigne la

longueur de u). On a alors u u'bn avec n ^ 0, la dernière lettre de w'

étant a, si | w' | > 0. Dans ces conditions on a

o(aù) u'bnab~nu'~lvbv~x

d'où

£ P{ab~ nu' ~ ivbv~ 1u' bn) •

Utilisant une nouvelle fois le lemme 3, on obtient que u'~lu bk. L'irréductibilité

de ubv~l implique alors u' u. Ceci montre que o est un auto-

morphisme intérieur.

III. Applications polynomiales laissant X invariant
CARACTÉRISATION DES O TELS QUE Qc 1

On désigne par R un domaine d'intégrité de caractéristique nulle et par
sd l'ensemble des \j/ e (.R[x, y, z])3 tels que X o \}/ X.

L'ensemble sd contient {Oa ; o e aut F}. Il sera commode de considérer

les éléments suivants de aut F:

a =s (b, a) ß (a3 b~l) y (ab, b~l)

Les <ï> correspondants sont

^ z) (y, x, z)

%(x, y, z) (x, y, xy - z)

®y(x, y, z) (z, y, x)

On considérera aussi les applications polynomiales suivantes:

P(x,y, z) (-x, - y, z)

et

0(x, y, z) (~x,y, - z)

Ces applications polynomiales sont également dans jd.

Nous allons montrer que sd est engendré par <Ê>a, p et 0.
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Lemme 1. Si i|/ (i|/i, xi/2, H/3) appartient à sd, alors on a, pour
i 1, 2, 3, d°\Vi ^ 1.

Démonstration. Si, par exemple, \j/3 était constant, égal à c, on aurait

Vi + ¥2 ~ c\|/i\|/2 x2 + y2 + z2 - xyz - c2

Or, le premier membre de cette expression est réductible dans un corps,
extension convenable de R, alors que le second membre ne l'est pas.

Notons deg\|/ la somme d°\|/j + d°\j/2 + d°\j/3 et posons

«Sf {\|/e deg q/ 3}

Lemme 2. & est le groupe engendré par <3>a, e/1 p.

Démonstration. Appelons les variables Xi,x2,x3 au lieu de x, y, z. Soit

\j/ e L. On a i|//(x) lj + Uj où lj est un polynôme homogène de degré 1 et

Uj e R. On a

3

(lj + Uj)2 — (Il + U\) (l2 + u2)(l3 + U3) x\ + x\ + X3 — X1X2X3
y 1

L'identification des termes de degré 3 donne lj U/XtC/) où ly e R, et x e 9^
et 1- L'identification des termes quadratiques donne alors u{ u2

u3 0, v\ v\ v\ 1.

Il est dès lors facile de se convaincre que \j/ est dans le groupe engendré

par Oa, Oô et p.

Lemme 3. Soit (\j/i, vj/2, \j/3) e sd tel que degij/ > 3. Alors, il
existe o e <a, ß,y>, le groupe engendré par a, ß et y, tel que
deg (00 o \j/) < deg y.

Démonstration. Puisque Oa et Oy sont des transpositions distinctes de
deux composantes, quitte à remplacer y par Oa o y, avec o g < a, y >, on
peut supposer que d°\j/3 ^ d°\\f2 ^ d°\y 1 ^ 1.

Puisque deg\j/ > 3, on a d°\|/3 ^ 2. Or (\j/3 - \|/i\|/2)\|/3 + y \ + y]
x2 + y2 + z2 - xyz. Si l'on avait öf°\|/3 ^ \j/2 on aurait

3 sup(öf°\|/3, d°\\ßi\\f2) -f d°y3 ^ 4

On a donc d°\|/3 fi?°\|/i\|/2, d'où d°\\f3 > d°\\f2. Si l'on avait <i0(\|/3 - \|/i\|/2)
d°\i/3, on aurait 2rf0\|/3 3, donc on a d°(y3 - < d°y3. Ceci

montre que deg o \j/ < degvj/. Ceci achève la démonstration du lemme.
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Théorème 4. sd est le groupe engendré par Oa, Oß, <DY et p.

Démonstration. Il suffit d'appliquer de façon répétitive le lemme

précédent pour se ramener au lemme 2.

Théorème 5. L'ensemble des g e Horn (F, F) tels que Qa 1 est

l'ensemble des automorphismes de F.

Démonstration. Dire que Qa 1 équivaut à dire 00 e sd. Si Oa e jaf, le

lemme 3 permet de montrer l'existence d'un t e < a, ß, y > tel que
Ox o Oa e {0, p}. Mais, en vertu des lemmes II.3 et II.4, on a alors
<Ê>T o Oa id. Il en résulte (théorème II.5) que t o g est un automorphisme,
donc aussi g.

Lemme 6. Si iw désigne l'automorphisme intérieur u -> wuw ~1

de F. On a

ia ßaßyßyaß et ib aiaa

Démonstration. Elle se fait par vérification directe.

Théorème 7. L'ensemble des automorphismes de F est le groupe
engendré par a, ß et y.

Démonstration. Soit g e AutF. Alors Oa e sd. Comme précédemment,
il existe te < a, ß, y > tel que Ox o <ï>a id. Le théorème II. 1 montre alors

t o g est soit un automorphisme intérieur, soit un automorphisme intérieur
composé avec (tf_1,Z?_1), qui n'est autre que (aß)2. Le théorème résulte
alors du lemme précédent.

Remarque. Ce théorème est un résultat ancien de Nielsen [5], [6], mais

la démonstration que nous en donnons ne fait pas appel à la délicate théorie
de la réduction de Nielsen.

IV. Etude des relations Oa ®x et Qa 0

Notons F* l'ensemble des éléments w de F qui sont image d'un générateur

par un automorphisme de F.

Théorème 1. Soit o et t deux endomorphismes de F tels

que a(a),ü(b) et g (ab) soient dans F*. Alors les assertions suivantes

sont équivalentes:
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1°) oa oT

2°) t(Z>) et t (ab) sont conjugués respectivement à g {a) ou

G(a)-\o(b) ou G(b)~l ,a(ab) ou G(ab)~l.

Démonstration. Il est clair que la seconde assertion implique la première,

et ce sans qu'il soit nécessaire de faire d'hypothèses sur o.

Supposons que l'on ait Oa Ot et g {a) p(tf), o(Z?) v(Z?) et

g (ab) (où p, v et £ sont des automorphismes de F). On a alors

<É>n-i0 ®n-iT, d'où en vertu du lemme II.4, p_1T(tf) ua±lu~l pour un

u e F. Par suite t (a) \i(ü)G(a)±l\i(ü) -1. On opère de même pour t (b) et

t (ab).

Théorème 2. Pour des automorphismes g et % de F, les assertions

suivantes sont équivalentes:

1°) Oa 0T

2°) 5 ± T

3°) t oiw ou t a(aß)2/w pour un w e F.

Démonstration. L'équivalence des assertions 1°) et 3°) est une simple
reformulation du théorème II.l. L'équivalence de ces assertions avec la
seconde résulte de la caractérisation, en termes de leurs matrices, des

automorphismes intérieurs de F ([6]).

Proposition 3. Si g est un endomorphisme de F\ non injectif, il
existe deux entiers m et n et un élément w de F tel que g (a) wm

et G(b) wn.

Démonstration. On utilise la théorie de la réduction de Nielsen ([6], [7]).
Etant donné o e Horn (F, F) arbitraire, il existe un automorphisme p de F tel
que l'une des éventualités suivantes se produise:

1°) Le couple (op(ûr), op(£)) est réduit au sens de Nielsen,

2°) ofi(tf) est réduit au sens de Nielsen et op(&) e.

3°) op(a) op(b) e.

Dans le premier cas op est injectif, d'où la proposition.

Lemme 4. Soit y (\j/i, \|/2, i|/3) e (R [x, y, z])3 (où R est un
domaine d'intégrité de caractéristique nulle) tel que l'on ait X o \j/ 0.
Alors, il existe i e AutF tel que Ot o \p ait sa première composante
constante.
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Démonstration. On peut évidemment supposer que l'on a d°\j/x ^ d°\j/2

^ °\p3. La relation X o \j/ 0 s'écrit \p3(\|/3 - \|/i\p2) 4 - \y] - yl, d'où
l'on déduit d0(\|/3 - M/1M/2) ^ d°\\f2. Supposons que l'on ait ^/°(\i/3 — ^1^2)
^ d°y3. On a alors d°y2 d°\\f3 et <i°\j/i + d°\y2 + d°\\f3 ^ 2d°\\f3 et,

donc, \y{ c e R. Par une procédure de descente analogue à celle de la
démonstration du théorème II.4, par composition par divers Ot on peut faire
décroître deg \j/ tant que l'une de ses composantes n'est pas constante.

Théorème 5. Pour a e Hom (F, F), Qa 0 si et seulement si o
n'est pas injectif.

Démonstration. Supposons g non injectif. En vertu de la proposition 3,

il existe p e AutFtel que op(Z?) e. Or, on sait que Qa]X Q^Qo 0 Or,
il est facile de vérifier que Qa]i 0. Comme Qß 1, cela implique Qa 0.

Supposons maintenant que l'on ait Qa 0. En vertu du lemme précédent,
il existe t e AutFtel que la première composante de <I>TG soit constante. Le
lemme II.2 montre alors que t a (a) e, ce qui prouve que g n'est pas injective.

Théorème 1. Pour tout g e End F, on a les faits suivants:

1°) ôo(2e, 2r|, 2srj) (det g)2 pour tous 8, ri e { - 1,1}.
2°) X divise le polynôme detO^ - (deto)QG.

Démonstration. Observons d'abord que si p et q sont deux entiers

rationnels on a

PaPbA*>y> z) zup(x)Ug(y) - xup(x)Ug-i(y) - yup-fx)uq{y)
+ 2%_i(x)W(7_IOO

Si 8 et p valent ± 1, il est facile de vérifier que

PaPbq{2s, 2rj, 2sr|) 2s^îT?

et de calculer le gradient de PaPbv-

P'aPbq{2s, 2% 28Ti) (sp(p - q), m{q~P)> pq)zpy\q •

Considérons maintenant un élément de o de End F dont la matrice est

pour <D0 et que l'ensemble {(2s, 2p, 2sq); s, p e{ - 1,1}} est globalement

invariant par Og.

V. Autres propriétés des polynômes Qg

précède montre que le point (2, 2, 2) est point fixe
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Démontrons la première assertion. Différentions deux fois la relation
X o ®a X - Q0 au point co (2s, 2r|, 2sr|). On obtient

'0;(co)r'(0(œ))0;(co) r'(co)ßG(co)

en ayant tenu compte de ce que À,(co), X'(co) et à/(Og(co)) sont nuls. Par

ailleurs, 0G - (PaPbg, Parbs, PaP + rbq + s) est un multiple de X. Par conséquent,

on obtient O^(co) en différentiant en co la fonction (PQPb^ Pap+*b<i**)-

Tous calculs faits on obtient la première assertion.

Pour démontrer la seconde assertion, nous allons montrer que le polynôme

detO^ - (det g)Qg s'annule en suffisamment de points de Q.

Considérons le point co(L u) (2 cos t, 2 cos u, 2 cos (t + u)) de Q. Son

image par <3>G est le point œ(pt + qu, rt + su) que nous noterons co o o(t, u).

Par différentiation de la relation 0G o co co o o, on obtient

9co 0co /8co \ /öco \
(O' o co) • — a (O' o co) • — (det o) — o g I a I — o g |

dt du \dt [du

Par ailleurs, on établit facilement la relation

0CO 8co
— a — - X' o co
0^ du

où l'on a fait les identifications nécessaires.

La relation X o 0G X • Q0 donne par différentiation, en observant que
X o co 0,

(Xf o 0G O co) (o; O co) V (Qa O co) CX' o co) • V

où V est un vecteur arbitraire. Compte tenu des relations précédentes, ceci
s'écrit encore

/0co _ 0co _ \ /0CO 0co \det — 0 O, — ° a,(©; o co) • V\(Qa O co)det — —\dt du

d'où

i // / 9 G) \
det (<5; O co) • —- o CO) • — (<t; o co) •

\ dt du

w_ x
/0co 0co \

(det o) (Qa o co)det — — V][dt du

Ceci montre l'égalité det (<I>; o co)(deto) (Qa o co) en chaque point où le
gradient de co n'est pas nul.
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Théorème 2.

1. Qa (0, 0,0) vaut 0 ou 1 selon que det g est pair ou impair.
2. <E>a(0, 0, 0) (0, 0, 0) si et seulement si det g est impair.
3. Ô; (0,0,0) 0.

4. Si det g est impair, Q'a'(0,0,0) est diagonal négatif.

Démonstration. Nous allons calculer Oa(0,0, z). Pour ce faire, considérons

(p e Hom(F, SL(2, C)) tel que cp(ûr) M et (p(Z?) \
\-l 0/ \X 0 /

avec X + X'1 z. On a évidemment cp(tf)2 (p(Z>)2 - 1 et, donc tout
produit d'un certain nombre de (p (a) et de (p (Z?) est réductible à l'une des formes

± (p((ab)n), ± q>((ab)na), ± cp((ba)n) ou ± (p((ba)nb) dont les traces

respectives sont ± tn(z), 0, ± tn(z) et 0 (où tn est un polynôme de Ch'ebyschev
de première espèce, cf. II).

Ceci nous conduit à définir le procédé suivant de réduction d'un élément
de F\ on remplace autant de fois qu'il est possible a1 et b2 par - 1. Ainsi le

mot aba2b3 donne - a.

Réduisons ainsi les mots g (a) et o(b). On obtient respectivement sa (a) et

t|g(&) où s et r| valent ± 1. Nous pouvons dresser le tableau suivant qui
donne, pour les différentes valeurs possibles de g (a) et o(b), en première
ligne, OCT(0, 0, z) et, en seconde, Qa(0, 0, z) en termes des polynômes de

Chebyschev t et u en la variable z.

a(b)
ö(a)

(ab)" (ab)" a (ba)" (ba)"b

(ab)m

(^m > in» im + n)

0

(tm, 0,0) Im > In Im - n

0

(tm,0,0)

u2m

(ab)ma
(0,4,0)

K

(0,0, -
U2m-n

(0,4,0)

<

(0, 0, tm + n +1

u2"m + n+ 1
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(ba)m

{tm j tn > tm - n)

0

{tm, 0,0)

«m

{tm tn tm + n)

0

{tm, 0,0)

"L

{ba)mb

(0,tn,0)

"I

(0, 0, tm + n+ l)

M m + n+1

(0,4,0)

"I

(0,0, -tm-n)

2
M m- n

On observe que Qo(0, 0, z) uv{z)2 où v det g Il est clair, par ailleurs,

que det g et det g ont même parité. La première assertion résulte alors de ce

nn
que un{0) sin—

2

La seconde assertion résulte de l'examen du tableau, compte tenu de

nn
ce que tn (0) 2 cos —

2

La troisième assertion résulte simplement de la parité de wj.
Démontrons la dernière assertion. D'abord, il est facile de déterminer

<É>G(x, 0, 0) et <I>G(0,^ 0). En effet soit x (a-1, ab) e End F. On a

0T(x, y, z) {x, z, y) et par conséquent <DGT (x, y, z) Oa(x, z, y), ce qui

permet par le procédé précédent de déterminer OG(0, y, 0). De la même façon

pour calculer <Ê>G(x, 0, 0) on utilise x {ab, b~l).
Supposons donc que det g 1 (mod 2). Ce qui précède montre que deux

des composantes de chacune des fonctions <3>a(x, 0,0), 0G (0,^,0) et

OG(0, 0, z) sont nulles alors que les troisièmes sont de la forme ± pni{x),
± Pn2(y), ± Pn3(z) respectivement, les entiers nl9 n2, n3 étant impairs. Par

ailleurs, en vertu du théorème 1, compte tenu de Q0 (0,0,0) 1, on a

det O'(0, 0, 0) 1 (mod2). Commep'n.{0) «/sin— ^ 0 (pour i 1, 2, 3),
2

on en déduit que la matrice 0^(0, 0, 0) a un terme non nul et un seul aussi

bien dans chaque ligne que dans chaque colonne et que ses termes non nuls

sont, aux signes près, nu n2 et n3. Autrement dit lO^(0, 0, 0)0^(0, 0, 0) est

une matrice diagonale dont les éléments diagonaux sont des carrés de nombres
impairs.

Différentions maintenant deux fois à l'origine la relation
X o 0O X - Qa. On obtient

<o;(o, o, o)à/'(0)o;(o, o, o) X"(0) - 4q;-(o, o, o)
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en ayant tenu compte des relations ^(0, 0, 0) - 4 et X'(0, 0, 0) 0. La
12 0 0\

conclusion résulte de X"(0) 0 2 01

\0 0 2/
Prenons un exemple: o (aba2b2a, aba3bab). Calculons Oa(0, 0,z). La

réduction de g donne {aba, - (ab)3) donc

4>o(0, o, z)(0, - t3 (z), 0) (0, 3 0)

et

ôo(0,0, z) u3(z)2 (z2 - l)2

Pour calculer 00(x, 0, 0), multiplions g par {ab,b~l), on obtient
(babab, bab), qui est réduit. Donc

<Ï>0 (x, o, 0) (0,0, - n W) (0, o,

et

Qa(x,0,0)ul(x)2 1

De façon analogue, on obtient

<M0,y, 0) feW, 0, 0) (y3 - 3y9 0, 0)

et

Qa(0,y, 0) (y2 - l)2

Ensuite on a

10 0 -1)
- 20;'(0,0,0) -3 0 0

\ 0 3 0

10 -3 0\
0 0 3 -7

\-l 0 0/
/0 0 0

d'où Q;a (0,0,0) 0 -4 0 1.
\0 0 -4/

VI. Cas d'un groupe libre à plus de deux générateurs

Avant de passer à la généralisation partielle de ce qui précède, nous avons

besoin d'un certain nombre de lemmes sur SL{2, C).
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Lemme 1. Soit A et B deux éléments de SL{2, C). On a

ABA AtrAB - B l

et tr (ABA) (fx A) (tr AB) - (tr B)

Démonstration. On a, par Cayley-Hamilton, AB + {AB) ~1 tr AB,
d'où

ABA + B 1 A tr AB

Lemme 2 (Formule de Fricke). Si A et B sont deux éléments de

SL{2, C), on a

tr {ABA ~lB~l) {trA)2 + {tr B)2 + (tr AB)2 - {tr A) (tr B) (tr AB) - 2

Démonstration. Une utilisation répétée du théorème de Cayley-Hamilton
suivie de celle du lemme précédent donne

ABA~lB~l AB {tr AB - BA)

ABtrAB - A{BtrB- 1 )A

ABtrAB - {A tr AB - B ~l)tr B + A tr A - 1

d'où le résultat, en prenant les traces des deux membres.

Considérons maintenant trois éléments Ai, A2i A3 de SL{2, C) dont les

traces sont respectivement Xi, x2 et x3. On note yx, y2 et y3 les traces de ^42^3,
A3A\ et A\A2.

Lemme 3. On a trAXA2A3 + trAxA3A2 xxyx + x2y2 + x3y3 - x{x2x3.

Démonstration. En vertu du lemme 1.1, on a

A2A3 + -43-42 yi - X2x3 + x3A2 + x2A3

d'où

AXA2A3 + AXA3A2 {yi ~ x2x3)Ax + x3AxA2 + x2AxA3
d'où le résultat.

Lemme 4. On a

(tr^4i^42^43) (tr^4i^43^42)

2 + y2~x,x2- x2x3yi

Démonstration. Utilisant le lemme 1 de deux façons, on obtient

~ X\ + x2 + x3 -h yi + y2 + y2 xxx2y3 — x2x3yx — x3xxy2 + yxy2y3 — 4
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A\A2A^A\AiA2 (A\tT(A1A2A2) —A3 lA2 1)A2A2

4i42(7243 ~~ A 2 l)A2

d'où

-^42-^4.3^42trC<r422-^43) A3 ^A2 lA^A2 4- y2A\A2A^A2 — 4.2-42-42 *-42

A3 1A2 1-4342 + yiA\{y\A2 — A3 *)

-^(^tr^f1)-^)
43"142"14342 + J>242 0>i42-X3 + 43)

- 4i42(*I*2 - ys) + Xi4i - 1

d'où le résultat.

Corollaire 5. Les nombres tr(4i4243) et tr(4i4342) sont les

racines de l'équation suivante, dont l'inconnue est z:

Z1 - p(X, Y)z + q{X, Y) 0

où

p(X, Y) + X2^2 + *373 - *1*2*3

et

q(X, Y) x\ + ** + x\ + y\ + y\ + y3 - *2*2^3 - *2*3^1

- *3*i y2 + yi J2J3 - 4

Nous venons de définir les polynômes p et q en les variables

X (*1,*2>*3) et Y (71,72,73). Posons

A(X, Y, z) z2- p(X, Y)z + q(X, Y)

Proposition 6. Le polynôme A est irréductible dans C[X, Y,z].

Démonstration. Si A était décomposable, le polynôme p2 - 4q
serait un carré dans C[X, Y], Il en serait de même du polynôme
(p2 — 4q) (0,0,0,^1,72,^3) dans C[7i,72,73]. Or (p2 - 4q) (0,0, 0,71,72,73)
est de degré 3, c'est donc impossible.

Notons Fia sous-variété algébrique de C7, ensemble des zéros de A. Elle
est irréductible.

Désignons par 71'application de [SL(2, C)]3 dans C7 ainsi définie:

r(4i,A2iA3) (tr4i, tr42, tr43, tr4243, tr434i, tr4i42, tr4i4243)

Il résulte du corollaire 5 que l'image de T est contenue dans la variété F.
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Proposition 7. L'image de T est la variété V.

Démonstration. Donnons-nous un point C*i, x2, x3, y\, yi, y3 > z) e V.

Nous avons à construire trois matrices AlfA2,A3 telles que T(A\, A2, A3)

(xl9x2,x3,yi,yt$y3,z). Nous allons distinguer plusieurs cas

— l'une des expressions X(xi, x2f y3)f X(x2,x3,yi), X{x3,x\ ,y2) n'est pas

nulle.
Traitons le cas où X(xux2,y3) =£ 0. Prenons

H-", '.)"-C T) "-t ,"J
Nous devons en outre avoir

txi + v - u y2

- T + TU + x2(x3 - t) y\
T t + (x2 - T~lX\)V + T ~ 1 (X3 — t) Z

T + T -1 y3

t(x3 - t) - UÜ 1

Les trois premières équations forment un système linéaire en tt u, v dont le

déterminant, compte tenu de la quatrième équation, vaut - X(xi,x2f y3), qui
est non nul par hypothèse. La compatibilité avec la dernière équation est

assurée par la relation

A(xl9x2ix3fyl,y2,y3,z) 0

— X(xux2,y3) X(x2,x3,yi) X(x3,xuy2) 0 et l'un au moins des |xr,|
est différent de 2.

Traitons le cas | X\ | ^ 2.

On vérifie que l'on peut prendre les trois matrices soit sous la forme

It 0 \ / u 1 \ I v 0\
\0 t1) \ 0 u~l) \w v1)

soit sous la forme

t 0 \ (u 0\/i> w \
0 t1) \1 u1) \0 u-1) '

— Enfin dans le dernier cas, on peut choisir pour Alf A2i A3 les matrices
±I, ±L ±L
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Proposition 8. Les conditions suivantes sont équivalentes:

1. A], A2,A3 ont une direction propre commune.

2. X(xux2iy3) Hxl9x3iyl) X(x3,xuy2) 0 et trA1A2A3 trAiA3A2.
3. X(x1>x2,y3) X(x2ix3,y1) X(x3,xuy2) 8(X, Y) 0

où 8 p2 - 4q.

Démonstration. Clairement les assertions 2 et 3 sont équivalentes et sont

impliquées par la première.
Supposons donc que Ton ait X(xux2)y3) X(x2,x3,yi) X(x3,xl9y2) 0

et que ^4i,^42,^43 n'aient pas de direction propre commune. Comme les

opérateurs ^4l5^42,^43 ont deux à deux une direction propre commune, on

peut dans une base convenable les représenter par des matrices de la forme

On vérifie alors que ti AXA2A3 tuv + {tuv)~l + ^t et tr^4i^43y42

tuv + (tuv)-1 + Et donc tr>4i^42^43 ^ try4i^43^42. Ceci achève la

démonstration.
Nous pouvons maintenant envisager de généraliser la section I au cas d'un

groupe libre ayant un nombre fini de générateurs. Nous considérons d'abord
le cas de F3, le groupe libre engendré par ai, a2,a3. Si (p est un homomor-

phisme de F3 dans SL(2, C), nous poserons

Proposition 9. Si w e F3, il existe un polynôme P e Z[X, Y, z],

unique modulo A, tel que pour tout cp e Hom(F3, SL{2, C)) on ait

Démonstration. L'existence se démontre par application répétée du

théorème de Cayley-Hamilton et du lemme 1.1. L'unicité résulte de la proposition

7.

Théorème 10. Si o est un endomorphisme de F3, il existe une

unique application polynomiale <£>a de V dans V telle que, pour tout
q> e Hom(F3, SL(2, C)) on ait

T(cp o o) oa(r(p).

avec =é 0 et t ± 1

Tip r(q>(ai), q>(û2), (pfe))

tr (w) P(Tip)

Démonstration. Il suffit d'appliquer la proposition précédente aux
éléments o{ax), o(a2), o(a3), o(a2a3)f o(a3ai), o(aia2) et o(axa2a3) de F3.
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Corollaire 11. Si o et t sont deux endomorphismes de F3, et si

l'on pose gt t ° g, on a <DOT Oa ° Ox.

Proposition 12. Soit Q la sous-variété de V définie par A (A, Y, z)

0, l(xl,x2,yi) X(x2,xi,yl) X(x3,xl,y2) HX,Y) 0.Alors

Q est invariante par toute application Oa.

Démonstration. Ceci résulte de la proposition 8.

Les calculs sur Fn, le groupe libre engendré par #1,^2 > '*'>#«» sont

moins explicites. Soit / l'ensemble des parties non vides de {1, 2, • • •, n}. Un

élément i de / est la donnée de ses éléments i\, h, ' ' '* h ordonnés en

croissant. Pour chaque cp e Hom(Fw, SL(2, C)), on note Lcp la collection

{tr <p{ahah • • • aik)}ieIi qui ne dépend que de la classe de la représentation (p.

On sait que l'ensemble des classes de représentations est une variété

algébrique [2]. Sa dimension est 3 (n - 1). On peut le voir en observant que, sauf

cas exceptionnels, on peut, étant donné (p e Hom(F„, SL(2, C)), fixer une

base de C2 de façon que les matrices de cp(tfi) et (p(a2) aient la forme

[Xx M et (° f I Les autres éléments cp(a3), — m, y (an) dépendent
1-1 0/ \t x2

alors de 3 (n - 2) paramètres. Une application répétée du théorème de Cayley-

Hamilton et de la proposition 1.1 montre alors l'analogue de la proposition
9: étant donné w e Fn il existe un polynôme P e Z [(*/)/6/], unique modulo

un certain idéal définissant une sous-variété algébrique de dimension 3 (n - 1)

de C7, tel que, pour tout cp e Hom(F„, SL(2, C)), on ait tr cp(w) P(7q>).

Pour chaque o e End(F„) on définit de même que précédemment une

application 00. Les applications Oa laissent invariante une variété (celle qui
est définie, en termes de traces, par le fait que n matrices 2x2 aient une
direction propre commune).

Des résultats analogues sur Fn ont déjà été obtenus par Kolar et Nori [4].
On doit cependant observer qu'ils utilisent beaucoup trop de variables et qu'ils
ne se sont pas préoccupés des questions d'unicité.

Dans deux articles à venir, l'un des auteurs donne un procédé général pour
obtenir des relations entre les traces de matrice p x p et de leurs produits et

traite le cas où au lieu de considérer les représentations d'un groupe libre dans

SL(2, C) on envisage des représentations dans SL(3, C).
Terminons par une dernière remarque. Au lieu de considérer des représentations

de i7 dans SL(2, C), on peut utiliser des représentations dans GL (2, C).
En effet, à cause de l'homogénéité, le lemme 1.1 est valable sans restriction
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sur les déterminants. Par ailleurs, pour une matrice 2 x 2, A, le théorème de

Cayley-Hamilton s'écrit

A2 - A (trA) + - [(trA)2 - trA2] 0
2

Donc, si Ai, A2i • • •, An sont n matrices 2x2 inversibles, par une
méthode analogue à celle que nous avons développée, tout produit de la
forme X\lX^2 • • • Xnkk (avec rij e Z et Xj e {Ai,A2i • • •, An) pour

j 1, 2, • • •, n) a une trace qui s'exprime comme fraction rationnelle à

coefficients entiers en les traces des produits {AixAi2 • • • Aik}ieI et les traces

des matrices

Note ajoutée sur épreuves

Au moment de corriger les épreuves, les auteurs ont eu connaissance d'un
certain nombre de travaux antérieurs ([9] à [16]) sur le même sujet.

L'existence de Pa a été prouvée par Horowitz [9]. L'application induite
<I>0 a été considérée (seulement dans le cas où o est un isomorphisme)
également par Horowitz [10] qui a aussi déterminé le noyau de O. La
considération du polynôme Q0 est nouvelle. Le lemme 2 de la section II se

trouve dans [15].
Certaines démonstrations données ici sont plus simples que celles de

Horowitz, bien qu'il y ait des recouvrements. Alors que Horowitz n'utilise que
des relations entre traces, nos calculs prennent place dans l'algèbre introduite
par Procesi [13] et Razmyslov [14], ce qui simplifie considérablement les

calculs. D'ailleurs, Magnus [12] fait allusion à la complexité des démonstrations

de certaines identités (par exemple, les lemmes 3 et 4 de la section VI)
et demande s'il est possible de les simplifier. Signalons qu'une description
complète de l'idéal des relations entre traces a été donnée par Whittemore [16]
dans le cas d'un groupe libre à quatre générateurs.

Les articles [11], [13] et [14] traitent des identités pour les matrices n x n.
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