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POLYNOMES ASSOCIES AUX ENDOMORPHISMES
DE GROUPES LIBRES

par Jacques PEYRIERE, WEN ZHI-YING et WEN ZHI-XIONG

ABSTRACT. If o is an endomorphism of F, the free group generated
by a and b, there exists a unique polynomial map @ from C3 to C3, with
integral coefficients, such that, for any representation ¢ of F in SL(2, C),
one has

(tr 9 (6 (@)), tr ¢ (c (1)), tr (o (ah))) = D, (tr ¢ (a), tr (D), tr o (abd)) .

The following relation holds: @,/ o = ®;© @5+ . The kernel of ® is shown
to be generated by the inner automorphisms of F and the involution which
takes g to a-! and b to b-!. If A denotes the polynomial x? + y2 + z2
— xyz — 4, then Ao ®, factorizes under the form A - Qs, where Q, is a
polynomial with integral coefficients. Among other properties of 0O, it is
proved that ¢ is an automorphism of E if and only if Q, equals 1 identically.
The case of a free group with more than two generators is also studied but,
in this case, results are less complete.

RESUME. A chaque endomorphisme ¢ du groupe libre F engendré par a
et b on associe une unique application polynomiale ®,, a coefficients entiers,

de C3 dans C3 telle que, pour toute représentation ¢ de F dans SL(2, C)
on ait

(tro(c(@), tro(o (D)), tro(c(ad))) = O, (tro(a), tro(b), tr ¢ (ab)) .

L’application ® est un anti-homomorphisme du monoide des endomorphismes
de F dans le monoide des applications polynomiales de C3 dans C3, muni de
la composition. Diverses propriétés de ® sont établies. En particulier, son
noyau est caractéris€. En outre, si A désigne le polyndme x2 + y2 + z2
— xyz — 4, le polynéme A © ® se factorise sous la forme A - Q, ou Q, est un
polyndme a coefficients entiers. Il est établi, entre autre, que ¢ est un
automorphisme de F si et seulement si Q, est identiquement égal a 1. Le cas

d’un groupe libre a plus de deux générateurs est également abordé, mais avec
des résultats moins complets.

AMS Classification: 20E0S5 - 20MO05 - 16R99 - 15A24.
KEYWORDS: Freegroups - finite automata - traces - PI rings - polynomial identities.
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Cet article répond a certaines questions posées dans [8]. Pour la commodité
du lecteur, dans la premiére partie, les résultats de [8] sont repris, et dans
certains cas précisés.

I. INTRODUCTION

On désigne dans les sections 1, 2, 3, 4 et 5 par F le groupe libre
a deux générateurs, ¢ et b. On note tr A la trace de la matrice carrée A.
Si ¢ est un homomorphisme de F dans SL(2,C), on note T¢ le triplet
(tr ¢ (), tr 9(b), tr ¢ (ab)).

L’image de T est C3® tout entier: pour s’en persuader, il suffit de

L x -1 0 A
considérer les ¢ tels que ¢(a) = et p(b) = .
(o)=L

Si o et ¢’ sont des endomorphismes de F, on pose 66’ =6" 0 ¢. On
identifiera un élément ¢ de Hom(F, F) au couple (c(a), c(b)) € F X F.

Si w est un élément de F, on désignera par w 1’élément de Z2, image de
w par ’homomorphisme d’abélianisation. Si ¢ est un endomorphisme de F,
il définit, par abélianisation, un endomorphisme de Z?2 dont nous désignerons
par ¢ la matrice transposée. En d’autres termes, ¢ est la matrice carrée
indexée par {a, b} X {a, b} dont les coefficients d’interprétent de la facon
suivante: si u et v appartiennent a {a, b}, 6, , = somme des puissances de la
lettre v dans o(x). On a évidemment (66”)” = 6o’.

On note A le polyndme A(x, ¥, z) = x? + y? + z2 — xyz — 4. On sait que,
pour ¢ € Hom (F, SL(2, C)), A(T) est nul si et seulement si ¢ (a) et ¢(b) ont
une direction propre commune.

LEMME 1. Soit A et B deux éléments de SL(2,C). On a
AB + BA =tr(AB) — (trA)(trB) + AtrB + BtrA .

Démonstration. Le théoréme de Cayley-Hamilton donne les relations
suivantes:

A l=trA - A
B-'=trB—-B
(AB)? = ABtr(AB) — 1.

Par ailleurs, on a
BA = A-'ABABB !
=A-'(ABtr(AB) —1)B~!

=tr(AB) — (trA— A)(tr B—- B)
=tr(AB) — (trA)(trB) + AtrB + BirA — AB .
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LEMME 2. Soit w e F. Il existe alors quatre polynomes,
PP ellx,yz2 (j=1,23,4),
tels que, pour tout ¢ € Hom(F, SL(2,C)), on ait
o(w) = P (To) + PP (T9)o(a) + PP (To)o(b) + P (Te)¢(ab) -

Démonstration. Posons, pour simplifier, @) =A, ©b) =B et
To = (x, ¥, z). On a alors, en vertu du théoréme de Cayley-Hamilton et du
lemme précédent,

A2 =xA4A — 1
Al =x-A
B?=yB -1
B-'=y—-B

BA=z—-xy+yA + xB - AB.
En outre,

ABA = A(z—xy+yA + xB — AB)
= A[z—yA -1+ xA~'B]
= —-y+zA+ xB.

Le lemme résulte alors de ces formules par récurrence sur la longueur de w,
supposé réduit.

PROPOSITION 3. Soit we F. Il existe alors un unique polynome
P, e Zlx, y,z] tel que, pour tout ¢ € Hom(F, SL(2,C)), on ait

tr o(w) = P,(To) .
Démonstration. L’existence résulte du lemme précédent:
tr o(w) = 2P (To) + P (To) tr o(@) + P (To) tro(b) + P (To) tr p(ab) .

L’unicité résulte de la surjectivité de 7.

Cette proposition, avec une démonstration légérement différente, figure
dans [1].

THEOREME 4. Soit o € Hom(F,F). Il existe alors un unique
®, € (Z[x, y, z])3 tel que, pour tout ¢ € Hom(F, SL(2,C)) on ait

T(9 © 6) = O,(To) .

Démonstration. Cela résulte simplement de la proposition précédente,
appliquée aux éléments @ (a), ¢ (b) et ¢(ab) de F.
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PROPOSITION 5. Quels que soient o, et o, dans Hom(F,F), on a
D5, = P, © Dy, .
Démonstration. On a
T(¢ © 62 0 61) = @, (T(¢ © 62)) = @5, © D, (TY) ,

d’ou le résultat a cause de I'unicité de ®@;,,,.

PROPOSITION 6. Quels que soient weF et o € Hom(F,F), on a

Po(w) = Pw o (Do s

Démonstration. Soit ¢’ I’élément de Hom (F, F) ainsi défini: ¢'(a) = w,
c’(b) = b. Alors P, et P;,, sont les premieres composantes de @, et de @,
respectivement. Or ®,., = @5, 0 ®,, d’ou le résultat.

THEOREME 7. Soit o € Hom(F,F). Il existe alors un polynome
Os € Zix, y,z] tel que I'on ait ) o ®; =X - Q.

Démonstration. Soit ¢ € Hom(F, SL(2, C)) tel que A(Tp) = 0. Alors
¢ (a) et @ (b) ont une direction propre commune. Il en est donc de méme de

¢ (o (a)) et de ¢ (o (d)). Par suite A(Q;(7T9)) = 0.
L’existence de Q, avait ét€ conjecturée dans [3] et prouvée dans [8].

PROPOSITION 8. Si o, et o, sont deux éléments de Hom(F, F)
on a

Q01°2 = QG?. ) ch © (Dﬁz :
Démonstration. On a

}\‘Oq)()'lcz:()\‘O@Gl)O@Gz:(}\‘.Qﬁl)OQGQ_: )\‘.QGZ'Q(I]O(DGQ“

PROPOSITION 9. Si w et w’' sont deux éléments de F tels que

4

w =w’', alors P, — P, est divisible par \.

Démonstration. Si ¢ est un homomorphisme de F dans SL (2, C) tel que
¢(a) et ¢(b) ont une direction propre commune, on a P,(Tg) = P, (Ty),
comme on peut le voir en trigonalisant simultanément ¢ (a) et ¢ (b). Par suite
le polyndme P, — P,- s’annule sur les zéros de A.

Soit Q la variété des zéros de A. Le théoréme 7 dit que Q est stable par
tout ®,. La proposition 9 dit que la restriction de ®, & Q ne dépend que de
’abélianisé ¢ de o.
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PROPOSITION 10. Si o € Aut(F), alors det®,= = l.

Démonstration. Différentions la relation ®;-1 © @, = id et prenons les
déterminants. On obtient

det(®’_, © @;)det (@) = 1.

Comme ces déterminants sont des polyndmes a coefficients entiers, ils sont
nécessairement constants, égaux a =+ 1.

LEMME 11. Pour tout o € Hom(F,F), ona Q,(0,0,0) =0 ou 1.
Démonstration. 11 suffit de considérer ¢ € Hom(F, SL(2, C)) tel que

@ = 0 1et(b)—0i
cpa)—(_l o) ® —(Z_ o)'

Nous donnerons plus loin un résultat plus précis que celui-ci.

PROPOSITION 12. Si ce AutF, ona Q,=1.

Démonstration. Ceci résulte de la proposition 8 et du lemme 11.
II. DETERMINATION DU NOYAU DE @

Comme I’ont observé Kolar et Ali [3], les polyndmes de Chebyschev
interviennent naturellement dans ce contexte.

Considérons les deux suites de polyndmes {¢,},cz €t {u,} .z satisfaisant
la méme relation de récurrence

biv1(X) + 11 (X) = x1,(x)
Un+1(X) + Up—1(X) = XUp(X)
avec les conditions initiales
h(x)=2, Hx=x, ux=0, wuyx=1.
I1 est facile de vérifier les faits suivants:
tp=1t,, d, =|n]
U pn=—Uy, duy=n-1 si nx1
(2 cos @) = 2 cos nop

sin n@

U,(2cos ) =
sin @

(X)) = xu, (x) — 2un—1(x) .
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L’intérét pour nous de ces polyndmes vient du lemme suivant dont la
démonstration par récurrence est immédiate.

LEMME 1. Si A est une matrice carrée telle que A? = xA — 1, alors,
pour tout neZ, ona

A" = u,(X)A — u,_1(x)

et, si A est une matrice 2 X 2,tr A" = t,(x).

LEMME 2. Soit w = a™b™a™b" .- a™b" un élément de F. On
suppose que, si k>0, on a mmy---mn - n#0, (si k=0,
par convention w =e). Alors d P, =k, (ou d, désigne le degré par
rapport a la variable z).

Démonstration. Elle se fait par récurrence sur k. Le lemme est vrai pour
k = 0. Supposons-le vrai pour £ </ — 1.

Soit w = a™brigmp"2 -+ g™b™ = wia™b™. On a, si To = (x, y, 2),

O(W) = @(W1) [, (X) 9 (@) — U~ 1(X)] [, () @ (D) — Un,—1 (P)] -

La trace de ¢ (w) est donc combinaison linéaire a coefficients polyndmiaux en
x et y des traces de @ (w,ab), ¢ (wia), @ (w;b) et ¢ (w;). Puisque, pour calculer
des traces de produits, on peut opérer des permutations circulaires, I’hypotheése
de récurrence montre que les traces de ¢ (w;a), ¢ (w,b) et @(w;) ont un degré
en z inférieur ou égal a / — 1.

Ainsi donc le degré en z du polyndme

tr @(w) — tr (@ (wyab)) Uy, (x) un, (»)

est strictement inférieur a /.
Répétant le méme argument aux autres facteurs de w, on obtient que le
degré en z du polyndme

!
tr o(w) — tr (¢ [(@b)']) T [etm, (%) e, ()]
j=1
est au plus / — 1.
Mais tr ¢ (ab)’ = 1;(z) est un polyndme en z de degré /. Ceci achéve la
démonstration.

LEMME 3. Si weF est tel que P, =oaz(ae€Z), alors a=1 et
l'ona w=uabu=! ou w=ua"'b-'u-!' pour un ue€F.
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Démonstration. Si o = 0, le lemme précédent montre que la réduction
cyclique de w est e, a™ ou b”. Dans aucun de ces cas on obtient P, = 0.
Donc a # 0.

Le lemme précédent montre alors que la réduction cyclique de w est a”b”
(avec mn # 0). Alors le lemme 1 montre que ’on a

P, 3, 2) = un (XD Un (¥)Z — Y1 (XD tn (¥) — Xty () tUy— 1 ()
+ 2Upm 1 () U1 (Y) .
Or 4, (x)u,(y) = o implique |m | = |n| =1et a = mn. Si mn = — 1, alors

I’un des deux termes yu,, _;(x) u,(¥) ou xu,(x)u,_(y) reste seul, ce qui est
impossible. Donc m = n = + 1, d’ou le lemme.

LEMME 4. Soit weF. Alors
1) Si P,=o0x, ona a=1 e w=wuau-! ou w=ua‘'u-"'.

2°y Si P,=ay, ona o=1 et w=ubu"! ou w=ub-1u-1.

Démonstration. Supposons que ['on ait P, = ox. Considérons
I’¢lément o € Hom(F, F) ainsi défini: o(@) = ab, o(b)=5b"1. On a
@, (x, ¥, 2) = (z, ¥, x), donc, en vertu de la proposition 1.3, on a P,y (X, ¥, 2)
= P, 0®s(x, y, 2) = 0z. On en déduit (lemme précédent) que o = 1 et que
c(W) =uabu-! ou o(w) =wua"'b-'u-!. Mais 6 est un isomorphisme:
c~ Y@ =ab, o-'(b)=b"'. On a donc w=o0"'(was (- ou
w=oc"Ywb - la-lbo(u-1).

Pour démontrer la seconde assertion, on utilise de la méme fagon 1’isomor-
phisme (a1, ab).

THEOREME 5. Pour o € Hom(F,F) les propriétés suivantes sont
équivalentes.

1°) @, = id

2°) © est soit un automorphisme intérieur, soit un automorphisme
intérieur composé avec ’involution (a-!,b-1).

Démonstration. 1l est clair que la seconde propriété implique la premiére.
Supposons que l’on ait ®, = id. Il résulte du lemme précédent que ’on a

c(@=uwua*u-! avec e=+letuekF

el

o) =vbw-! avec MmM=xletvekF.
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On sait par ailleurs (proposition 1.9) que A divise Pg(gpy — Pgepn. Comme
Pyapy =2 €t Py-1p, = Py-1=xy — 2z on a € = 1. Quitte & composer avec
I’involution (e¢~!, b~1), on peut supposer que 'ona € =1 = 1.

Supposons que les mots uau ~! et vbv ! soient réduits. Si u = v = e, il
n’y a rien a4 démontrer. Sinon, supposons que |u | > |v| (ou | u | désigne la
longueur de ). On a alors u = u’b” avec n # 0, la derniére lettre de u’
étant @, si |u’|> 0. Dans ces conditions on a

c(ab) = u'b"ab—"u’'~lvbv~!
d’ou
4= P(ab‘"u"’ubU'lu’b") .

Utilisant une nouvelle fois le lemme 3, on obtient que ' ~'v = b*. L’irréduc-
tibilité de vbv-! implique alors u’ = v. Ceci montre que ¢ est un auto-
morphisme intérieur.

III. APPLICATIONS POLYNOMIALES LAISSANT A INVARIANT
CARACTERISATION DES 6 TELS QUE Q, = 1

On désigne par R un domaine d’intégrité de caractéristique nulle et par
o/ 1’ensemble des v € (R][x, y, z])3 tels que A o y = A.

L’ensemble «/ contient {®,; c € aut F}. Il sera commode de considérer
les éléments suivants de aut F:

a=(®ba, Pp=@>bl), vy=(@,b ).

Les @ correspondants sont

®,(x, ¥, 2) = (¥ X, 2)

Dy (x, ¥, 2) = (X, 9, Xy — 2)

(I)'y(x: Y, Z) = (Z, s X) .
On considérera aussi les applications polynomiales suivantes:

p(x: Y, Z) = (_ X, _)’: Z)
et

6(x, %2 =(-x5 —2).

Ces applications polynomiales sont également dans .«Z.
Nous allons montrer que ./ est engendré par ®,, @5, ®,, p et 0.
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LEMME 1. Si v = (v, V2, V3) appartient a </, alors on a, pour
i=1,2,3,d%; > 1.

Démonstration. Si, par exemple, s était constant, égal a ¢, on aurait
2 2
Wi+ Wy = cyiwy = X2+ p2 42 - xyz - 2

Or, le premier membre de cette expression est réductible dans un corps,
extension convenable de R, alors que le second membre ne I’est pas.
Notons deg v la somme d°y; + d%y, + d°y; et posons

Y ={ye o; degy = 3}.

LEMME 2. & est le groupe engendré par ®,,®, et p.

Démonstration. Appelons les variables x;, x,, x; au lieu de x, y, z. Soit
yeL.Onavwy;(x)=1/ + u;oul; est un polyndme homogene de degré 1 et
uje R. On a

3
Y G+up?— G+u) e+ w)(s+us) = X7+ x5+ X5 — X103 .
i=1

L’identification des termes de degré 3 donne /; = v;x;;youV; € R, et T € &
et v0,03 = 1. L’identification des termes quadratiques donne alors u; = u,
=u; =0, =0vi=01=1.

Il est des lors facile de se convaincre que y est dans le groupe engendré
par ®,, @5 et p.

LEMME 3. Soit vy = (Y, V., V¥3) € & ftel que degwy > 3. Alors, il
existe o e <o,B,y>, le groupe engendré par o,B et vy, tel que
deg (@, © ) < deg v.

Démonstration. Puisque @, et ®, sont des transpositions distinctes de
deux composantes, quitte & remplacer y par @, © y, avec 6 € <o,y >, on
peut supposer que d%y; > d%y, > d%y; > 1.

Puisque degy >3, on a dy;>2. Or (ys— vy y)ys + w2+ y?
= X%+ y*+ z%> — xyz. Si lon avait dy; # d°y,y, on aurait

3 =sup(d®y;,dy;y;) + dOys > 4.

On a donc d%y3 = d %y, y,, d’ott d%y; > dOy,. Si ’on avait do(y; — v y,)
= d%y;, on aurait 2d%y; = 3, donc on a do(y; — v ;) < dOys;. Ceci
montre que deg ®g o y < deg y. Ceci achéve la démonstration du lemme.
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THEOREME 4. &/ est le groupe engendré par ®,,®;, d, et p.

Démonstration. 11 suffit d’appliquer de fagon répétitive le lemme
précédent pour se ramener au lemme 2.

THEOREME 5. L’ensemble des o € Hom(F,F) tels que Q, =1 est
[’ensemble des automorphismes de F.

Démonstration. Dire que Q, = 1 équivaut a dire &, € .« Si &, € , le
lemme 3 permet de montrer D’existence d’un te€ <a,B,y> tel que
®, 0o &, €{6,p}. Mais, en vertu des lemmes II.3 et II.4, on a alors
@, 0 @, = id. Il en résulte (théoreme I1.5) que T © ¢ est un automorphisme,
donc aussi o©.

LEMME 6. Si i, désigne [lautomorphisme intérieur u — wuw !
de F. Ona

i, = BoaPyByaB et i, = aio.

Démonstration. Elle se fait par vérification directe.

THEOREME 7. L’ensemble des automorphismes de F est le groupe
engendré par o,p et v.

Démonstration. Soit 6 € Aut F. Alors &, € /. Comme précédemment,
il existe T € < a, B,y > tel que ., 0 &, = id. Le théoreme I1.1 montre alors
T 06 est soit un automorphisme intérieur, soit un automorphisme intérieur
composé avec (a~!,b~1), qui n’est autre que (af)?. Le théoréme résulte
alors du lemme précédent.

Remarque. Ce théoréme est un résultat ancien de Nielsen [5], [6], mais
la démonstration que nous en donnons ne fait pas appel a la délicate théorie
de la réduction de Nielsen.

IV. ETUDE DES RELATIONS ®;, = ®, ET O, = 0

Notons F* ’ensemble des éléments w de F qui sont image d’un générateur
par un automorphisme de F.

THEOREME 1. Soit o et 1 deux endomorphismes de F tels
que o(a),c(b) et o(ab) soient dans F*. Alors les assertions suivantes

sont équivalentes.:
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1°) @, = D,
2°) 1(a),t(b) et 7t(ab) sont conjugués respectivement a o(a) ou
c@-',o() ou o) ',c(@b) ou oc(ab)'.

Démonstration. 1l est clair que la seconde assertion implique la premiére,
et ce sans qu’il soit nécessaire de faire d’hypotheses sur o.

Supposons que lon ait ®,=®, et o(a) = pu(@),c(d) =v(d) et
o(ab) = E(ab) (ou p, v et & sont des automorphismes de F). On a alors
®, 1, = ®,-1,, d’o0 en vertu du lemme II.4, p~'1(a) = ua*'u-1 pour un
u € F. Par suite 1(a) = p(w)o(a)='n(w) ~!. On opére de méme pour t(b) et
t(ab).

THEOREME 2. Pour des automorphismes ¢ et 1 de F, les assertions
suivantes sont équivalentes:

1°) @, = o,

2°) 6==x1

3°y t=o0i, ou t=o(aPB)?i, pour un weF.

Démonstration. L1’équivalence des assertions 1°) et 3°) est une simple
reformulation du théoréme II.1. L’équivalence de ces assertions avec la
seconde résulte de la caractérisation, en termes de leurs matrices, des auto-
morphismes intérieurs de F ([6]).

PROPOSITION 3. Si o est un endomorphisme de F, non injectif, il
existe deux entiers m et n et un élément w de F tel que o(a) = wnm
et o(b) = wn.

Démonstration. On utilise la théorie de la réduction de Nielsen ([6], [7]).
Etant donné 6 € Hom (F, F) arbitraire, il existe un automorphisme p de F tel
que ’une des éventualités suivantes se produise:

1°) Le couple (cp(a), op (b)) est réduit au sens de Nielsen,

2°) ou(a) est réduit au sens de Nielsen et o (b) = e.

3°) ou(a) =op(d) =e.

Dans le premier cas op est injectif, d’ou la proposition.

LEMME 4. Soit v = (Y¥1,V¥,V¥3) € (R[x,»,2])? (o R est un
domaine d’intégrité de caractéristique nulle) tel que l’on ait )\ o v = 0.

Alors, il existe tve AutF tel que ®.0 vy ait sa premiére composante
constante.
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Démonstration. On peut évidemment supposer que ’on a d%y; < d%y,
< dO%y;. La relation A o y = 0 s’écrit ys(ys — y,u,) = 4 — i — y2, d’ou
I’on déduit d°(y; — y,v,) < d%y,. Supposons que ’on ait d2(y; — yy>)
> d%y;. On a alors do%y, = d%; et doy; + dOy, + dOy; < 2d%y; et,
donc, y; = c € R. Par une procédure de descente analogue a celle de la
démonstration du théoréme I1.4, par composition par divers ®, on peut faire
décroitre deg ¢ tant que ’une de ses composantes n’est pas constante.

THEOREME 5. Pour o € Hom(F,F),Q,=0 si et seulement si o
n’est pas injectif.

Démonstration. Supposons ¢ non injectif. En vertu de la proposition 3,
il existe p € Aut F tel que op(b) = e. Or, on sait que Qs = 0, Qs © D,. Or,
il est facile de vérifier que Q,, = 0. Comme Q, = 1, cela implique Q, = 0.
Supposons maintenant que 1’on ait Q; = 0. En vertu du lemme précédent,
il existe T € Aut F tel que la premiére composante de ®., soit constante. Le
lemme I1.2 montre alors que T6(a) = e, ce qui prouve que ¢ n’est pas injective.

V. AUTRES PROPRIETES DES POLYNOMES Q,
THEOREME 1. Pour tout o € EndF, on a les faits suivants:
1°) Os(2¢, 2n, 2en) = (detc)> pour tous e,ne{—1,1}.
2°) A divise le polynome det® — (deto)Qs.

Démonstration. Observons d’abord que si p et g sont deux entiers
rationnels on a

Parpa(%, 3, 2) = 24y () t1g () = Xty (D hy -1 () = Yty -1 ()t ()
+ 2u, 1 (XD ug-1(y) .
Si € et n valent + 1, il est facile de vérifier que
Prpa (28, 21, 2em) = 28PN
et de calculer le gradient de Pyppq:
P:,,.(28,2n,2en) = (ep(p — @), nq(q — p), Enpg)ern .

Considérons maintenant un élément de ¢ de End F dont la matrice est

c = (‘D q) . Ce qui précéde montre que le point (2,2,2) est point fixe
r s

pour ®; et que I’ensemble {(2e,2n,2en);&,m € {— 1, 1}} est globalement
invariant par @,.
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Démontrons la premiére assertion. Différentions deux fois la relation
Ao ®, =A-Q, au point ® = (2€, 21, 2en). On obtient

‘DL (@A (P (@) P (@) = 1" (0) Oo ()

en ayant tenu compte de ce que A(®), A’ () et A'(®@y(w)) sont nuls. Par
ailleurs, ®; — (Pyrpa, Parps, Pao+rpa+s) €st un multiple de A. Par conséquent,
on obtient @/ (w) en différentiant en ® la fonction (Psrpe, Parpss Pap+rpa+s).
Tous calculs faits on obtient la premiére assertion.

Pour démontrer la seconde assertion, nous allons montrer que le polynéme
det ®. — (det 6)Q, s’annule en suffisamment de points de Q.

Considérons le point o (?, ) = (2cost, 2 cosu,2cos (f + u)) de Q. Son
image par @, est le point o (p? + qu, rt + su) que nous noterons ® © G (¢, u).

Par différentiation de la relation ®;, ©c ® = ® © 6, on obtient

ow 0w o  _ o _
@, o) —A(@.o®)— =(detc) |— o] A|—oo0c].
ot ou ot ou

Par ailleurs, on établit facilement la relation

do Jw
— A—=—-A"0®
at ou

ou ’on a fait les identifications nécessaires.

La relation A © @, = A - Q, donne par différentiation, en observant que
Aow=0,

(A o®;00) (o) =(Qow)r cw)-V

ou V est un vecteur arbitraire. Compte tenu des relations précédentes, ceci
s’écrit encore

do _ dw _ oo 0w
det |—o0,—o06,(@. 0w V]| = (Q; ©c w)det | —, —
(at =05, 00) ) © “’)e(af au’V)

d’ou
oW 0
det ((cp;oco)-—, @0 0) —, (@0 w)- V)
ot ou

= (det 6) (Q,; © w)det (6_03 , 8_co_ , V)
ot Odu

Ceci montre 1’égalité¢ det(®. o w) = (det 6) (Qs; © ®) en chaque point ou le
gradient de w n’est pas nul.
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THEOREME 2.

1. O;(0,0,0) vaut 0 ou 1 selon que deto est pair ou impair.
2. ®,(0,0,0) = (0,0,0) si et seulement si detc est impair.

3. Q.(0,0,0)=0.

4. Si detc est impair, Q.(0,0,0) est diagonal négatif.

Démonstration. Nous allons calculer ®,(0, 0, z). Pour ce faire, considérons
0 1 0 —-Ar-!

¢ € Hom(F, SL(2,C)) tel que ¢(a) = ( | O) et ¢(b) = (7» 0 ) ,
avec A+ A~ ! =2z On a évidemment ¢(@)? = ¢(b)2= — 1 et, donc tout
produit d’un certain nombre de ¢ (@) et de ¢ (b) est réductible a ’'une des formes
+ ¢((ab)"), + ¢o((@b)"a), =+ @((ba)”) ou =+ ¢((ba)"b) dont les traces
respectives sont + £,(z), 0, + £,(z) et 0 (ou #, est un polyndme de Chebyschev
de premiere espéce, cf. II).

Ceci nous conduit a définir le procédé suivant de réduction d’un élément
de F: on remplace autant de fois qu’il est possible a? et b2 par — 1. Ainsi le
mot aba?b3 donne — a.

Réduisons ainsi les mots ¢ (a) et 6(b). On obtient respectivement €6 (a) et
no(b) ou € et n valent + 1. Nous pouvons dresser le tableau suivant qui
donne, pour les différentes valeurs possibles de 6(a) et o(b), en premiére
ligne, ®;(0,0,2) et, en seconde, O,;(0, 0, 2) en termes des polyndmes de
Chebyschev ¢ et u en la variable z.

o (b) (ab)™ (ab)"a (ba)" (ba)"b
c(a)
(tm’tn,tm-i-n) (tm: O’ O) (tmatnatm—n) (tmyo’ O)
(ab)™
0 u’, 0 u’
(0, tn’o) (0’09 -—tm—n) (Os tn,O) (0709 tm+n+1)
(ab)™a
u, Ups U, Un a1
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(tmatn’tm—n) (tm,()’O) (tm9tnatm+n) (tmaO’O) .

(ba)™
0 ul, 0 u.,
(0: tn; O) (Os 09 Z‘m+n+1) (O: tn,o) (O’ O, —tm—n)
(ba)™b
ui ufn+n+1 uf-z ufn—n

On observe que O, (0, 0, 2) = u,(z)? ot v = det 6. Il est clair, par ailleurs,
que det o et det 6 ont méme parité. La premiére assertion résulte alors de ce

. nm
que u,(0) = sm—z— .
La seconde assertion résulte de I’examen du tableau, compte tenu de
nm
ce que #,(0) = 2cos—2— .

La troisiéme assertion résulte simplement de la parité de uf,.

Démontrons la derniére assertion. D’abord, il est facile de déterminer
®,(x,0,0) et ®;(0,5, 0). En effet soit 1= (a"!,ab) e EndF. On a
®.(x,y,2) = (x,2,¥) et par conséquent P, (x,y, 2) = Os(x, 2, »), ce qui
permet par le procédé précédent de déterminer @, (0, y, 0). De la méme fagon
pour calculer ®;(x, 0, 0) on utilise T = (ab, b~1).

Supposons donc que det 6 = 1 (mod 2). Ce qui précede montre que deux
des composantes de chacune des fonctions ®,(x, 0,0), ®,(0,y, 0) et
®,(0, 0, z) sont nulles alors que les troisiemes sont de la forme =+ p, (x),
+ Pn, (), £ Pn,(2) Tespectivement, les entiers ny, ny, n; étant impairs. Par
ailleurs, en vertu du théoréme 1, compte tenu de Q,(0,0,0) =1, on a

n;m
det ®;(0,0,0) = 1 (mod 2). Comme p, (0) = nisin—z— # 0 (pouri=1, 2, 3),

on en déduit que la matrice ®,(0, 0, 0) a un terme non nul et un seul aussi
bien dans chaque ligne que dans chaque colonne et que ses termes non nuls
sont, aux signes prés, ny, n, €t n3. Autrement dit *®’(0, 0, 0)®’ (0, 0, 0) est
une matrice diagonale dont les éléments diagonaux sont des carrés de nombres
impairs.

Différentions maintenant deux fois a [I’origine la relation
Ao ®;, =A-Q;. On obtient

‘@.(0,0,0)A"(0)®;(0,0,0) = A" (0) — 4Q2 (0,0, 0)
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en ayant tenu compte des relations A(0,0,0) = — 4 et A'(0,0,0) = 0. La
2 00

conclusion résulte de A”(0) = [0 2 O
0 0 2

Prenons un exemple: ¢ = (aba?b?a, aba3bab). Calculons ®,(0,0, z). La
réduction de ¢ donne (a@ba, — (ab)?) donc

(I)o(o, Oa Z) = (0! - t3(Z), O) = (09 3Z - Z3, O)
et
05(0,0,2) = u3(z2)*> = (z2 - 1)2.

Pour calculer ®,(x, 0,0), multiplions o par (ab,b~'), on obtient
(babab, bab), qui est réduit. Donc

@, (x, 0,0) = (0,0, — £, (x)) = (0,0, —x)
et
Os(x,0,0) = u;(x)2=1.
De facon analogue, on obtient
®4(0,,0) = (p3(»),0,0) = (>~ 3y,0,0)

et

Q:(0,7,0) = (»* - 1.

Ensuite on a

0 0 -1y /O =3 0

-2070,0,0)=1-3 0 ©0 0 0 3| -1
0 3 0 -1 0 O
0 O 0
d’ou Q./(0,0,00=10 -4 0
0O 0 -4

VI. CAS D’UN GROUPE LIBRE A PLUS DE DEUX GENERATEURS

Avant de passer a la généralisation partielle de ce qui précede, nous avons
besoin d’un certain nombre de lemmes sur SL (2, C).
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LEMME 1. Soit A et B deux éléments de SL(2,C). On a
ABA = AtrAB — B!
et tr(ABA) = (tr A) (tr AB) — (ir B) .

Démonstration. On a, par Cayley-Hamilton, AB + (AB)~! = tr AB,
d’ou

ABA + B! = AtrAB .

LEMME 2 (Formule de Fricke). Si A et B sont deux éléments de
SL(12,C), ona

tr(ABA-'B-1) = (tr A)? + (tr B)? + (tr AB)? — (tr A) (tr B) (tr AB) — 2.

Démonstration. Une utilisation répétée du théoréme de Cayley-Hamilton
suivie de celle du lemme précédent donne

ABA-'B~! = AB(tr AB — BA)
= ABtrAB - A(BtrB—-1)A
= ABtrAB — (AtrAB—-B " )trB+ Atr4 — 1

d’ou le résultat, en prenant les traces des deux membres.
Considérons maintenant trois éléments A4,, A,, A; de SL(2, C) dont les

traces sont respectivement x;, X, et x3. On note y;, ¥, et y; les traces de A, A5,
A3A1 et A1A2.

LEMME 3. On a trA1A2A3 + tI'AlA3A2 = XY + X3 + X33 — X1 X2 X3.
Démonstration. En vertu du lemme 1.1, on a

A2A3 + A3A2 =¥ — X2X3 + X3A2 + X2A3

d’ou
A1A2A; + A1A3A; = (V1 —XX3) A + X344, + A1 45,

d’ou le résultat.

LEMME 4. On a
(tf A1A2A3) (tr A1A3A2)
=X]+ X3+ X+ Y]+ Yy + V) — X1 XaPs — XaXsPy — XsXo s + Y Vays — 4

Démonstration. Utilisant le lemme 1 de deux facons, on obtient
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A1 Ay A3 A A3 A, = (A tr(A14,45) — A5 A5 ) A3A,
= A1 A,(1, A3 — A 1_1)142
d’ou
A1 AsAxtr (A1 Ay As) = AT TAS VA A, + 1,414,454, — AjA,ATMA,
= A; A7 A3 Ay + pAy(n Ay — ALY

— A (A, tr (4,471 - Ay)
= A3_1A2_1A3A2 + 1 A1(1A4: — X3+ A3)

- AAxx,— ) + xidi— 1,
d’ou le résultat.

COROLLAIRE 5. Les nombres tr(A,A,As) et tr(4;4;A4,) sont les
racines de l’équation suivante, dont l’'inconnue est z.

2?2-pX,Y)z+q(X,Y)=0

ou

PX,Y) =x1p1 + X2 + X3)3 — X1X0X3
et

qX, Y) = X1+ X5+ X5+ Y1+ Y3+ Y3 — X0y — %X
— X3X1 Y2 + Y1)2)3 — 4.
Nous venons de définir les polyndbmes p et g en les variables

X =(X1,X%,x3) et Y =(y1,Y2,)3). Posons

AX, Y,2)=z22-pX, )z +¢qX, Y).

PROPOSITION 6. Le polynéme A est irréductible dans C[X, Y, z].

Démonstration. Si A était décomposable, le polyndme p? — 4q
serait un carré dans C[X, Y]. II en serait de méme du polyndome
(p*—4q) 0,0,0, 1, y2,»;) dans C[y, y2, y3]. Or (p*—4¢q) 0,0,0, 31, 2, ys)
est de degré 3, c’est donc impossible.

Notons V la sous-variété algébrique de C7, ensemble des zéros de A. Elle
est irréductible.

Désignons par 7T P’application de [SL(2, C)]® dans C7 ainsi définie:

T(Al,Az,A3) = (trAl,trAz,trAg,trA2A3,trA3A1,trA1A2,trA1A2A3) .

Il résulte du corollaire 5 que I’image de T est contenue dans la variété V.
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PROPOSITION 7. L’image de T est la variété V.

Démonstration. Donnons-nous un point (X, Xz, X3, Y1, Y2, ¥3,2) € V.
Nous avons & construire trois matrices A4, A,, A3 telles que T(A,, A;, A3)
= (X1, %2, X3, V1, V2, V3, 2). Nous allons distinguer plusieurs cas

— P’une des expressions A(x;, X2,V3), A(X2,X3,¥1), A(X3,X1,y2) n’est pas
nulle.
Traitons le cas ot A(xy, X2, y3) # 0. Prenons

X 1 0 —-t! t u
A= , Ay = : A3=( )
-1 0 T X vV X3—1

Nous devons en outre avoir

Xy +0—-—u=y

— 1t W+ tu+ x0-1)=n

T+ -t Ixpo+ 10— =2
T+ 171 =y,

ts—1t) —uv=1.

Les trois premiéres équations forment un systéme linéaire en ¢, u, v dont le
déterminant, compte tenu de la quatrieme équation, vaut — A(x;, X2, ¥3), qui
est non nul par hypothe¢se. La compatibilité avec la derniére équation est
assurée par la relation

A(xlaxl’x3sylay29y3az) = 0 .

— A(X1, X2, ¥3) = A(X2, X3, Y1) = A(X3, X1, ¥,) = 0 et ’'un au moins des | x; |
est différent de 2.

Traitons le cas | x; | # 2.

On vérifie que I’on peut prendre les trois matrices soit sous la forme

o ) (65 (007
o ) (u5) (6 1),

— Enfin dans le dernier cas, on peut choisir pour 4,, 4,, A; les matrices
+I1, +1, +1.

soit sous la forme
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PROPOSITION 8. Les conditions suivantes sont équivalentes:
1. A,, A,, A3 ont une direction propre commune.
2. AGt,x,)3) = A0, X3, 01) = Mg, x, ) =0 et trA1A,A; = tr AjAzA,.
3. A1, X2, ¥3) = A2, X3, ¥1) = MXs, X1, 02) = 6(X, Y) =0
ou & = p?—4q.

Démonstration. Clairement les assertions 2 et 3 sont équivalentes et sont
impliquées par la premieére.

Supposons donc que 'on ait A(x;, X2, ¥3) = AXx2, X3, Y1) = A(X3, X1, 32) =0
et que A,;,A,, A; n’aient pas de direction propre commune. Comme les
opérateurs A4;, A,, A; ont deux a deux une direction propre commune, on
peut dans une base convenable les représenter par des matrices de la forme

(t 0)(u 2i)et (U O)avec CE+0 et t#+ 1.
0 ¢! 0 u-! C ov-1

On vérifie alors que trA,A,A; = tuv + (ftuv) ' + (&t et trA;A;A4,
= tuv + (tuv) ~ ' + {&¢~!. Et donc tr A, A, A3 # tr A; A3 A,. Ceci acheve la
démonstration.

Nous pouvons maintenant envisager de généraliser la section I au cas d’un
groupe libre ayant un nombre fini de générateurs. Nous considérons d’abord
le cas de Fj, le groupe libre engendré par a;, a,, @;. Si ¢ est un homomor-
phisme de F; dans SL(2, C), nous poserons

To = T(o(a1), 0(a2), 9 (a3)) .

PROPOSITION 9. Si we F;, il existe un polynéme PeZ|X,Y,z],
unique modulo A, tel que pour tout ¢ € Hom(F;, SL(2,C)) on ait

tr (w) = P(T9) .

Démonstration. 1.existence se démontre par application répétée du
théoréme de Cayley-Hamilton et du lemme I.1. L’unicité résulte de la proposi-
tion 7.

THEOREME 10. Si o est un endomorphisme de F;, il existe une
unique application polynomiale ®, de V dans V telle que, pour tout
¢ € Hom(F;, SL(2,C)) on ait

T(¢ © o) = O;(T9) .

Démonstration. 11 suffit d’appliquer la proposition précédente aux
éléments o (a;), 6(ay), o(as), o(a,as), o(asa;), o(a1a,) et 6(a1axa;) de F;.




ENDOMORPHISMES DE GROUPES LIBRES 173

COROLLAIRE 11. Si o et T sont deux endomorphismes de F, et si
I’on pose o6t =100, ona @5 = o, 0 D,.

PROPOSITION 12. Soit Q la sous-variété de 'V définie par A(X, Y, 2)
:Oa A’(xlsx2ay3)=)“(x29x3’y1)=}"(x35x1ay2)=6(Xa Y) = 0. AlorS
Q est invariante par toute application @ .

Démonstration. Ceci résulte de la proposition 8.

Les calculs sur F,, le groupe libre engendré par ai, @z, ', @n; sont
moins explicites. Soit I I’ensemble des parties non vides de {1,2, -+, n}. Un
élément i de I est la donnée de ses éléments i, i, - **, iy ordonnés en

croissant. Pour chaque ¢ € Hom(F,, SL(2,C)), on note T la collection
{tr o(a;,a;, " * @i, )}ie1, qui ne dépend que de la classe de la représentation ¢.
On sait que I’ensemble des classes de représentations est une variété alge-
brique [2]. Sa dimension est 3(n — 1). On peut le voir en observant que, sauf
cas exceptionnels, on peut, étant donn€ ¢ € Hom (F,, SL(2, C)), fixer une
base de C2? de facon que les matrices de ¢@(a;) et ¢(a,) aient la forme

( i 1) et (O ! 1) . Les autres éléments ¢(a3), - -, ¢ (a,) dépendent
-1 0 t X

alors de 3 (n — 2) paramétres. Une application répétée du théoréme de Cayley-
Hamilton et de la proposition 1.1 montre alors 1’analogue de la proposition
9: étant donné w € F, , il existe un polyndme P € Z[(x;); < ;], unique modulo
un certain idéal définissant une sous-variété algébrique de dimension 3(n — 1)
de CI, tel que, pour tout @ € Hom(F,, SL(2, C)), on ait tr o(w) = P(To).

Pour chaque o € End(F,) on définit de méme que précédemment une
application ®,. Les applications ®, laissent invariante une variété (celle qui
est définie, en termes de traces, par le fait que n matrices 2 X 2 aient une
direction propre commune).

Des résultats analogues sur F, ont déja été obtenus par Kolar et Nori [4].
On doit cependant observer qu’ils utilisent beaucoup trop de variables et qu’ils
ne se sont pas préoccupés des questions d’unicité.

Dans deux articles a venir, I’'un des auteurs donne un procédé général pour
obtenir des relations entre les traces de matrice p X p et de leurs produits et
traite le cas ou au lieu de considérer les représentations d’un groupe libre dans
SL(2, C) on envisage des représentations dans SL (3, C).

Terminons par une derniére remarque. Au lieu de considérer des représen-
tations de F dans SL (2, C), on peut utiliser des représentations dans GL (2, C).
En effet, a cause de I’homogénéité, le lemme 1.1 est valable sans restriction



174 J. PEYRIERE, Z.-Y. WEN AND Z.-X. WEN

sur les déterminants. Par ailleurs, pour une matrice 2 X 2, A4, le théoréme de
Cayley-Hamilton s’écrit

1
A2 — A(tr A) + 5 [(tr A)? —trA2] =0.

Donc, si A4,,A4,,--,A, sont n matrices 2 X 2 inversibles, par une
méthode analogue a celle que nous avons développée, tout produit de la
forme X7'X52---X;* (avec meZ et X, e{A, A " ,A,} pour
Jj=1,2,---,n) a une trace qui s’exprime comme fraction rationnelle a
coefficients entiers en les traces des produits {A4; A;, -+ A; }ies €t les traces
des matrices {A%}; =15, n-

NOTE AJOUTEE SUR EPREUVES

Au moment de corriger les épreuves, les auteurs ont eu connaissance d’un
certain nombre de travaux antérieurs ([9] a [16]) sur le méme sujet.

L’existence de P, a été prouvée par Horowitz [9]. L’application induite
®, a été considérée (seulement dans le cas ou o est un isomorphisme)
¢galement par Horowitz [10] qui a aussi déterminé le noyau de ®. La consi-
dération du polyndbme Q, est nouvelle. Le lemme 2 de la section II se
trouve dans [15].

Certaines démonstrations données ici sont plus simples que celles de
Horowitz, bien qu’il y ait des recouvrements. Alors que Horowitz n’utilise que
des relations entre traces, nos calculs prennent place dans I’algébre introduite
par Procesi [13] et Razmyslov [14], ce qui simplifie considérablement les
calculs. D’ailleurs, Magnus [12] fait allusion a la complexité des démons-
trations de certaines identités (par exemple, les lemmes 3 et 4 de la section VI)
et demande s’il est possible de les simplifier. Signalons qu’une description
compléte de I’idéal des relations entre traces a €t€ donnée par Whittemore [16]
dans le cas d’un groupe libre a quatre générateurs.

Les articles [11], [13] et [14] traitent des identités pour les matrices n X n.
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