Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 39 (1993)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: ELLIPTIC SPACES I

Autor: Felix, Yves / Halperin, Stephen / Thomas, Jean-Claude
DOl: https://doi.org/10.5169/seals-60412

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-60412
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique, t. 39 (1993), p. 25-32

ELLIPTIC SPACES II

by Yves FELIX, Stephen HALPERIN') and Jean-Claude THOMAS =)

ABSTRACT. A simply connected finite CW complex X is elliptic if the
homology of its loop space (coefficients in any field) grows at most
polynomially. We show that in all other cases the loop space homology grows
at least semi-exponentially, and we exhibit a number of geometrically
interesting classes of spaces as elliptic, including: H spaces, homogeneous
spaces, Poincaré duality complexes whose mod p cohomology is doubly
generated (any p) and Dupin hypersurfaces in S7+!1.

1. INTRODUCTION

Let X be a simply connected finite CW complex, with loop space Q.X, and
denote by F,, the prime field of characteristic p, p prime or zero. Our first

main result asserts a dichotomy for the size of the loop space homology
H,.(QX;F),):

THEOREM A. Let X be a simply connected finite CW complex. For
each p (prime or zero) there are exactly two possibilities: either

(1) There are constants C >0 and reN such that

Y dmH/(QX;F,)<Cn’, n>1,

i=0
Key words: loop space homology, depth, polynomial growth, Poincaré complex, elliptic,
Dupin hypersurface.
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or else

(1) There are constants K >1 and NeN such that

Y dimH(QX;F,) =K', nx=N.
i=0

In case (1) the loop space homology grows at most polynomially, and X
is Z,-elliptic in the sense of [6]. If (i) holds for all p then X is elliptic. The
main theorems of [6] assert that if X is elliptic then X is a Poincaré complex
and that H,(QX; Z) is a finitely generated left noetherian ring.

In case (ii) above the loop space homology grows at least semi-
exponentially. However, when p = 0 [2] or p > dim X [8], it can be shown that
even the primitive subspace of H4(QX;F,) grows exponentially (implying
the same result for H,(QX; F,)), and we conjecture that this should hold
true for all p.

In the dichotomy of Theorem A, the generic situation is (ii): elliptic spaces
are rare within the class of all simply connected finite CW complexes. However
a number of geometrically interesting spaces are elliptic, and our second
objective in this note is to show that these include the following classes of
spaces (provided they are simply connected):

finite H-spaces,

homogeneous spaces,

spaces admitting a fibration F = X — B with F, B elliptic,

Poincaré complexes X such that for each p, the algebra H*(X;F,) is
generated by two elements,

Dupin hypersurfaces in S”*1,

closed manifolds admitting a smooth action by a compact Lie group, with
a simply connected codimension one orbit,

connected sums M # N with the algebras H*(M; Z) and H*(N; Z) each
generated by a single class.
This note is sequel to ‘‘Elliptic Spaces’’ [6]. In particular, it supersedes the
preprint ‘‘Dupin hypersurfaces are elliptic’’ referred to in [6].

2. THE DICHOTOMY
Consider first any simply connected space X with each H;(X; F,) finite

dimensional. Then G = H,(QX;F,) is a graded cocommutative Hopf
algebra satisfying G, = F, and each G; is finite dimensional. The depth of G
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is the least integer m such that Extg(F,; G) # 0; if Extg(F,; G) = 0 we say
G has infinite depth. In [3: Theorem A] it is shown that

depth H,(QX;F,) < LScat X .

Thus the depth is finite when X has the weak homotopy type of a finite CW
complex.

On the other hand suppose G is any graded cocommutative Hopf algebra
with Gy = F, and each G; finite dimensional. We call G elliptic [7] if G is a
finitely generated nilpotent Hopf algebra. According to [4; Theorem A] this
is equivalent to the condition:

dim G; < Cn’ (fixed C, r, all n) .

0

depthG < o0 and

IlM:

i

In view of these remarks, Theorem A follows from

THEOREM 2.1. Let G be a cocommutative Hopf algebra of finite depth
such that G, =F, and each G; is finite dimensional. Then there are
exactly two possibilities:

(1) G is elliptic, and for some r e N there are positive constants
Ci, Cy such that

n
Cin'< ), dmG, <GCn’, n>1;

i=0

(2) For some constants K> 1,Ne N
ZdlmG>KV" n>=N.

Proof. Consider the formal power series G(z) = Z dim G;z’, and for
i=0

two formal power series f = E a;z' and g = E b;z! write f < gif
i=0 i=0

@.1) i Coalln.

“M*

i

We shall first show that there are exactly two possibilities:

(2.2) For some r e N there are positive constants Ci, C, such that

n

Cin"< ), dimG, < Gn', n>1;

i=0
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(2.3) For some k € N.

G(z) > H [1+ (917 .

i=1

Indeed, suppose Z dim G; < G,n’ for all n, some C, and r. Then by

i=0
[4; Theorem B], G is elliptic and hence [7; Prop. 3.6] the formal power series
G(2) has the form

S
II A+zki+ - 4 z0-1K)
Jj=1

G(2) =

H(I—Z)

i=1

It follows at once that (2.2) is satisfied.

n

Conversely, we assume there is no C,r for which Z dim G; < Cn’,
i=0

all n, and prove (2.3). Let x;,x,,... be a sequence of generators of the
algebra G with degx, < degx, < ---. The subalgebra G(i) generated by
Xi, ..., X; is then a sub Hopf algebra. Now according to [4; Prop. 3.1] there
is some g such that G(7) has finite depth, i > g. Moreover by [7; Prop. 3.5]
G (/) is not elliptic for some / > g. Set H = G(/); it is a finitely generated
non-elliptic Hopf algebra of finite depth, and dim G; > dim H,.

Next, let R be the sum of the solvable normal sub Hopf algebras of H.
Then [3; Theorem C] R is elliptic. Hence [7; Prop. 3.1] and [3; Prop. 3.1]
the quotient Hopf algebra H / R has finite depth, but [7; Prop. 3.3] H / R
is not elliptic. Clearly, however, H // R is finitely generated and has no central
primitive elements. Now by [4; Prop. 3] there is an integer n, and an infinite
sequence of non zero primitive elements y; € H / R such that for all i,
degy; < degy;. < degy; + ny. A linear embedding

,.®1 F,[»1/y} > H/ R

is then defined by ' ® -+ ® y;» = yi' --- y,;7, and so

(oo}

[I G+z%) < H/R) @) < HR@) < GR) .

i=1

Since degy;, < iny + degy; it is sufficient to take k = max(degy;, ng) to
achieve (2.3).
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It remains to deduce the inequality (2) from (2.3). If the inequality (2)

holds for some power series A(z) it will also hold for A(z*), at the cost of
1

replacing K by K 5;. By (2.3) we are thus reduced to showing that the power
series

(o]

Y qgzi=[] A+29)

i=0 i=0
satisfies (2). But this is an immediate consequence of a theorem of Hardy and
Ramanujan [10]. [J

COROLLARY OF PROOF. If G satisfies the hypotheses of Theorem 2.1
(2) then for some k € N,

o> [ n+@H1. D

i=1

‘3. ELLIPTIC SPACES

In this section we establish the ellipticity of the spaces listed in the
introduction.

3.1. Finite simply connected H-spaces, X.

Because X is an H-space, H.(Q.X; F,) is commutative, all p. Since it has
finite depth [3; Theorem A] it is elliptic [7; Prop. 3.2]. Hence X is elliptic.

- 3.2. Simply connected homogeneous spaces, G /| H.

We may suppose that G is simply connected, and hence elliptic by §3. The
fibration G — G/H — BH loops to the fibration QG - Q(G/H) —» H in
which m; (H) acts trivially in H«(QG; F,) [1; Lemma 5.1]. Thus we can use
the Serre spectral sequence to deduce polynomial growth for
H.(Q(G/H);F,) from the same property for H4(QG;F,).

3.3. Fibrations F > X — B with F, B elliptic.

Here all spaces are simply connected and we can apply the Serre spectral
sequence to deduce that H 4 (X; Z) is concentrated in finitely many degrees, and
finitely generated in each. Hence X has the weak homotopy type of a finite
CW complex. Loop the fibration F— X — B and use the fact that
Hy,(QF;F,) and H.(QB;F,) grow polynomially to deduce the same
property for H4(QX;F,).
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3.4. Simply connected Poincaré complexes X with H*(X;F,) at most
doubly generated.

Suppose p # 2 and H = H*(X; F,) contains an element of odd degree.
Then it has an odd generator o. Using Poincaré duality it is easy to see that
there are only three possibilities for the algebra H:

H=Aoa or Aoc@AB or Aa®@F,[B]l/B*.

In each case a simple, classical computation [11] produces Tor#(F,, F,) and
shows that it grows polynomially. Since the Eilenberg-Moore spectral sequence
converges from Tor#(F,,F,) to H*(QX;F,), H*(QX;F,) also has this
property.

In all other cases (p = 2 or H concentrated in even degrees) H is a
commutative local ring in the classic sense. Because H satisfies Poincaré
duality it is a Gorenstein ring. Now a theorem of Wiebe [12; Korollar p. 268]
asserts (because H has at most two generators) that H is a polynomial algebra
divided by a regular sequence. It is thus easy (and classical [11]) to compute
Tor#(F,,F,), and deduce that it grows polynomially. Hence so does
H.(QX;F),).

3.5. Simply connected Dupin hypersurfaces E in S"*!.

In [9; Table 2.1] are listed the possibilities for H4 (E; Z). We divide these

into three cases, using the notation of [9].

Case (a): E has the same integral homology as S¥ or as S¥ x S'.

In this case Poincaré duality shows that £ has the same integral cohomo-
logy ring as S* or as S* X S/, and we can apply 3.4.

Case (b): E has the rational homotopy type of As(2), As(4), A;(8), As(2) or
Ag(2).

In these cases the calculations of [9; §6] show explicitly that the ring
H*(E;Z) is torsion free and generated by two elements. Thus each
H*(E; F,) is doubly generated, and we can apply Wiebe’s result as in 3.4.
Case (c): E has the integral homology of S* x S' X Sk+! with k < I.

We need, in this case, to recall from [9; § 2] that there are linear sphere
bundles

Sk>E—>B and S'—E- B,

with By, B; simply connected focal submanifolds of S”+!. Moreover if
Dy, D; denote the corresponding disk bundles with boundary E then
S”+1 = DO kE.'J Dl .
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Fix p >0 and consider the Serre spectral sequence for the fibra-
tion Sk — E — B, with coefficients in F,. If this fails to collapse then
H*(mo): H*(By; F,) = H*(E; F,) is surjective. Since / > k it is always true
that H*(m,) is surjective. Choose classes o € H*(By; F,), B € H*(B;; F,)
mapping to the same non-zero class in H*(E;F,). The Mayer-Vietoris
sequence for the decomposition S"*! = D, LEJ D, then gives a class

Yy € H*(S"+1; F,) restricting to o and B, which is absurd.

Thus the spectral sequence for S¥ — E — B, collapses and so H 4 (Bo; F,)
= H,(S'x S'**;F,). Using Poincaré duality for B, we see that H*(By; F,)
and H*(S! x §'**; F,) are isomorphic as graded algebras. Thus B, is elliptic
by 3.4 and E is elliptic by 3.3.

3.6. Simply connected closed manifolds M with a smooth action by a
compact Lie group G, having a simply connected codimension one orbit.

Here we may assume G is connected. Let the orbit be G/K, and convert
the inclusion of G/K into a fibration F — G/K — M. From [9; Table 1.5] we
see that for any p, dim H;(F; F,) < 2, all i. Thus applying the Serre spectral
sequence to the fibration Q(G/K) > QM — F and using 3.1 for G/K we see
that H, (QM;F,) grows polynomially.

3.7. Simply connected manifolds M # N with each of the rings
H*(M;Z), H*(N; Z) generated by a single class.

By Van Kampen’s theorem both M and N are simply connected, and so
their fundamental cohomology classes are not torsion. Since each ring is
monogenic, H*(M; Z) and H*(N; Z) are torsion free. Thus H*(M;F,) and
H*(N;¥,) are also monogenic, and so H*(M # N; F,) is doubly generated.
Now apply 3.4.
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