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THE OKA-PRINCIPLE FOR MAPPINGS BETWEEN
RIEMANN SURFACES

by Jorg WINKELMANN

The Oka-principle is the philosophy that for Stein manifolds complex-
analytic properties should parallel topological properties. In this spirit it is
important to know under which conditions homotopy classes of continuous
maps correspond to homotopy classes of holomorphic maps. The first basic
result in this regard is due to Grauert [2] for maps from Stein spaces into
complex Lie group bundles. For example, this is a key ingredient in Grauert’s
proof that the topological classification of complex vector bundles over Stein
spaces is the same as the holomorphic one.

Over the years there have been numerous important applications and
extensions of Grauert’s Oka-principle. It is still of interest to determine if there
is a significantly broader class of spaces where the principle remains valid. For
example, Gromov has introduced ‘‘elliptic bundles’’ for this purpose [4].

Our goal here is to completely determine all pairs of Riemann surfaces for
which this homotopy principle holds, i.e. for which every continuous map is
homotopic to a holomorphic one.

THEOREM 1. Let M, N be Riemann surfaces. Then every continuous

map from M to N is homotopic to a holomorphic map in the following
cases:

1) M or N is isomorphic to C or A={zeC:|z|<1} or
szlf'ﬁN.

2) M is non-compact and N is isomorphic to P,, C* or a torus.

3) N isisomorphic to A* = A\{0} and M = M\ uU,D; where M isa
compact Riemann surface and D; are closed disks (with radius bigger
than zero).

In all other cases there exists a continuous map from M to N which
is not homotopic to a holomorphic map.
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Next we give a description of the ‘“other cases’’:

PROPOSITION 1. The ‘“‘other cases’ of the theorem are the following:
1) M compact and N = P,.
1) M is compact and both N and M are not simply-connected.

iii) M is neither compact nor simply-connected and N is not isomorphic to
a torus or one of the following surfaces: P,,C,C*, A, A*.

iv) M = M\\{p} and N = A*,
v) H\(M) is not finitely generated and N = A¥*.

First we show that these two lists exhaust all possible pairs of Riemann
surfaces. This is in fact an easy consequence of the well-known result below.

THEOREM 2. Let M be a Riemann surface. Assume that H, (M)
is finitely generated. Then there exists a compact Riemann surface M,
disjoint embedded closed disks D; C M and points p; Ssuch that
M=M\u U;D;u U;{p;}.

Proof (see also [7], 4.11.). Any Riemann surface M admits an exhaustion
by compact bordered Riemann surfaces P, with P, CC P?,,. This exhaustion
may be choosen in such a way (see [1], 1.29) that t,: H;(P,) = H{(P,.1) is
always injective. Moreover either 1, is an isomorphism or the rank increases.
Thus H, (M) being finitely generated implies that H, (M) = H,(Py) for some
N > 0. Furthermore M = Py_; u U;Q; where the Q; are disjoint open
subsets with H;(Q;) = Z. From the uniformization theorem it follows that
£:0; =A@, 1) with 0<r;< 1. (As usual A(r,s) = {z:7r <|z|< s}). Let
us consider &;(Py N Q;). Since Py is compact, we may deduce &;(Py N Q)
C A(s;, 1) with r; < s;. Using the embeddings A(r;, 1) C A we now obtain
the desired embedding of M in a compact Riemann surface M. O

In the sequel [M : N] always denotes the set of all (free) homotopy classes
of continuous maps from M to N. We will need the classification of homotopy
classes of continuous maps between Riemann surfaces.

THEOREM 3. Let M, N be Riemann surfaces. If N =P,, then
[M:N]l=H*(M,Z). If M is compact, then H?*(M,Z) =12 and the
continuous maps are classified up to homotopy by the Brouwer degree. For
non-compact M we have H?*(M,Z) = {0}.

If N=P,, then [M:N]= Hom(n,(M),n,(N)).
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Proof. This is standard algebraic topology (see e.g. [6]). The first
statement is a special case of the Hopf classification. The last assertion holds,
because due to the uniformization theorem N # P; implies that N is an
Eilenberg-MacLane space. [

We start with the proof of the positive statements. First note that in case 1)
any continuous map is homotopic to a constant map.

Case 2) may be deduced from the general result of Grauert [2]. However,
in this simple case there is an alternative approach. If N = P;, then
[M:P,] = H*(M,Z). But H*(M,Z) =0 for a non-compact Riemann
surface. Thus every continuous map is homotopic to a constant map for
N = P;. For N = C* note that the exponential sequence.

0>Z— 6 %0

yields a surjective map &:'(M, 7*) - H' (M, Z), because H' (M, ) = {0}
for a non-compact Riemann surface M. Now it follows from
Hol(M, C*) = ¢#*(M) and

H'(M, Z) = Hom(mn;(M), Z) = Hom (%, (M), 1t,(C¥))

that every continuous map from M to C* is homotopic to a holomorphic one.

Finally consider the subcase where N is a torus. Observe that for any one-
dimensional torus T there is a projection t: C* X C* —» T which is holo-
morphic and a homotopy equivalence. Thus the statement for C* implies the
statement for tori.

Proof of case 3). Let D] be relatively compact subdisks of D; and
M, = M\ u; D’ Now M is homotopic to M, and M is relatively compact in
M,. Any continuous map f: M — A* is homotopic to the restriction of a
continuous map F:M; - C*. Now F ~ G for some holomorphic map

G: M, - C*, Note that G(M) is compact. Hence kG(M)C A* for
some A. L[]

This completes the proof of the positive results. Now we have to prove the
negative statements.

We recall a standard fact about Riemann surfaces (see e.g. [1]):

LEMMA 1. Let M be a Riemann surface. If H,(M) = {0} or
Hl(M)—"?'-Z, then HI(M)'—“'RI(M).

COROLLARY. Let M, N be Riemann surfaces. Assume that neither M
nor N is simply-connected.

Then Hom(m,(M), n,(N)) # {0}.
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Proof. By the preceding lemma =, (M) # {0} implies H; (M) # {0}. For
a Riemann surface H;(M) is a free abelian group. Hence Hom (n,(M), Z)

+#{0}. O

LEMMA (CASE i). Let M be a compact Riemann surface, N = P,.
Then for any holomorphic map f:M — N the Brouwer degree deg(f) is
non-negative.

Proof. Holomorphic maps are orientation-preserving. [

LEMMA (CASE ii). Let M be a compact Riemann surface of genus
g>0. Let N be a Riemann surface which is not simply-connected. Then
there exists a continuous map from M to N which is not homotopic to
a holomorphic one.

Proof. Recall H, (M) = Z?¢. H,(M) is the quotient of the fundamental
group by its commutator group. It follows that there exists a group homomor-
phism p: m; (M) — m;(N) such that the image is a non-trivial cyclic subgroup
C of n;(N). Let N; = N be the covering corresponding to C C w; (). If
there would exist a holomorphic map inducing p, then this holomorphic map
f: M — N would be liftable to a map from M to N;. However M is compact
while &V, is not (A compact Riemann surface can not have a non-trivial cyclic
fundamental group). LI

For the next case (iii) we need a classical result.

PROPOSITION 2. A Riemann surface M admits a covering 1: A(r, 1)
M with 0<r<1(A@ 1) ={zeC:r<l|z|<1}) ifandonlyif M is
not isomorphic to P;,C,C* A, A* or a torus.

Proof. 1t is easy to check that the listed Riemann surfaces do not admit
such a covering. Hence let us assume that M is not isomorphic to one of those
Riemann surfaces. By the uniformization theorem it follows that the universal
covering M is isomorphic to the unit disk. Hence M = A/T" with
I' C PSL,(R). Consider the preimage I'y C SL,(R). Every y € I’y is conjugate
in SL,(R) to either

t=(1 1) orez(co.scbsm(b) ©eR)
0 1 — sin ¢ cos ¢

oF L. = (o A1

X 0
) (L € R*) .
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However 6 has necessarily a fixed point in A. Thus y is conjugate to either
t or {,. Let Z(t) be the generated group. Then A/Z(f) = A* and
A/Z(,) = A(r, 1). Hence we have to prove that Iy contains an element
conjugate to a {,. Let us assume that there is no such element. Then every
element in I'y is conjugate to ¢ and in particular its trace is 2. The elements
of SL,(C) with trace 2 constitute an algebraic subvariety which contains the
algebraic Zariski-closure of I’y . It follows that the algebraic Zariski-closure
is conjugate to the unipotent group U+ of upper triangular matrices. Since
U* n SL,(R) = R it follows that I'y is conjugate to the group of all elements

1 . .
of the form (O ’11) with n € Z. But the quotient of A by this group is A*

which contradicts our assumptions. [

Remark. 1t should be noted that the above two equivalent conditions are
furthermore equivalent to the property that M is hyperbolic and possesses a
closed geodesic.

LEMMA 2. Let M be a Riemann surface which is not simply-connected.
Let 1> r>0. Then there exists a continuous map f:M — A(r,1) which
Is not homotopic to a holomorphic map.

Proof. Assume the contrary. Let a € H, (M), a # 0 and B the generator
of Hi(A(r, 1)) = Z. Let f, be holomorphic maps with (f,)x o = npB. Regard
the covering t,: A(J'r, 1) = A(r, 1) given by 1,(z) = z". The maps f, lift to
maps g, with f, = 1, © g,. The natural embedding i: A()'r,1) S A(r, 1)
yields holomorphic maps h, =i o g, with h,(M) C A(J¥'r, 1) and (h,) o
= B. By the Montel theorem there is a convergent subsequence lim hn, = h.
Clearly 4, a = B. On the other hand # must be constant, because holomorphic
maps are open and the image of 4 is obviously contained in S! (recall 4, (M)
C A(]V'r, 1)). Thus we obtained a contradiction. [

Together with the preceding proposition this gives a proof for case ii1).

LEMMA (CASE iv). Let M, be a Riemann surface, p e M, and
M = M\{p}. Assume that M is not simply-connected. Then there exists

a continuous map g: M — A* which is not homotopic to any holomorphic
map.

Proof. First consider the case where M, is compact. Recall that by the
Riemann extension l:heorem any holomorphic map f: M — A* extends to a
holomorphic map f: M; = A. If M, is compact, then f must be constant.
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On the other side, there are continuous maps g: N — A* which are not
homotopic to a constant map. This completes the proof if M, is compact.
Now assume that M, is not compact. Let S be a contractible open neighbour-
hood of p with S\{p} = A*. A Maier-Vietoris-sequence implies that
H,(S\{p}) = H,(M) is injective. Hence any group homomorphism between
the fundamental groups of S\{p} and A* is induced by a continuous map
g: M — A*. On the other hand the Riemann extension theorem implies that
any holomorphic map from S\{p} to A* is homotopic to z — z* with k > 0.
Thus a continuous map from M to A* can not be homotopic to a holo-
morphic map in the case where the induced map 8S — OA is orientation
reversing. [

LEMMA (CASE V). Let M be a complex manifold for which H;(M)
is a free abelian group with infinitely many generators. Then there exists a
continuous map f:M — A* which is not homotopic to a holomorphic map.

Proof. The homotopy classes of continuous maps are classified by
Hom(n, (M), Z) = Hom(H,(M), Z). Let vy; denote the generators of H;(M)
and P the generator of H;(A*). Any sequence n; € Z defines a group homo-
morphism by y; n;a. Let M denote the universal covering of M. We fix
a base point in M resp. M. Let y? be closed curves in M starting at the
choosen base point and homologous to y;. These curves lift to curves in M
starting at the base point x; and ending at some points p; € M. Let d; denote
the Kobayashi-distance between x, and p;. Assume that for given n;
there exists a holomorphic map f: M — A* inducing the corresponding
group homomorphism. We may lift f to a map between the universal
coverings f:M— H*+ (as usual H* = {z:Im(z) > 0}). Then f(p))
= f (xo) + n; if the universal covering of A* is given by zH e2™z, Now
d( f (x0), f (xo) + n;) = An; where A is a positive number depending on
f (x0). Since holomorphic maps are distance-decreasing we obtain An; < d;
for all i. Hence 0 < A < d;/n; for all i. It follows that for »; with
inf,(d;/ n;) = 0 there is no holomorphic map f with f4y;, = nja. [

A VIEW TOWARD HIGHER DIMENSIONS

We will now investigate how to generalize our results to higher dimensions.
First we want to give a generalization of the positive case 3).

Definition. Let G be a complex manifold. An open subset Q is called an
attractive domain if the injection map i: Q S G is a homotopy equivalence and
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furthermore for each compact subset K C G there exists a holomorphic map
dx: G — G such that ¢x(K) C Q and furthermore ¢, is homotopy-equivalent
to the identity map idg.

THEOREM 4. Let M be an open submanifold of a Stein manifold X
such that M s relatively-compact and the injection map is a homotopy
equivalence. Let Q be an attractive domain in a complex-homogeneous
manifold Y.

Then every continuous map f:M — Q is homotopic to a holomorphic
map F:M — Q.

Proof. Since M & X is a homotopy-equivalence, there is a continuous
map f;: X = G homotopic to f.

By a result of Grauert and Kerner f; is homotopic to a holomorphic map
F: X— G. Now F, (M) is compact in G. Hence there exists ¢: G = G with
& F,(M) C Q. Thus F = ¢ ¢ F, | is the desired holomorphic map. L]

Remark. (1) If M is a bounded pseudoconvex domain with smooth
boundary in a Stein manifold X, then there exists a Stein manifold X with
M C X C X, such that M S X is a homotopy equivalence. (Simply take a

defining function f with M = {f < 0} and let X = {f < ¢} for a sufficiently
small € > 0.)

(2) Let G = (C** and K = (S!)*. Let W be an open subset of
G/K = R* such that the euclidean distance to the boundary d(-,0W) is an
unbounded function on W. Then n ~!(W) is an attractive domain in G,
where n denotes the natural projection G = G/K.

(3) The punctured unit ball B,\{(0, ..., 0)} in C"\{(0, ..., 0)} is another
example for an attractive domain.

Now we want to examine the negative case v). 1t reflects the general
principle that hyperbolic manifolds (like A*) are manifolds into which exist
only few holomorphic maps. In particular there are too few maps to reflect
a topology of ‘‘infinite type’’. Consider the following example: Let A be an
infinite discrete subset of the disk A and consider holomorphic maps from
M = A\ A to A*. Any such map extends to a bounded holomorphic map on
A. Now for p € A let v, € H, (M) denote the corresponding cycle around p.
Thus the Blaschke-condition for the zero sets of a bounded holomorphic
function may be reformulated as follows: A group homomorphism
¢: Hy(M)— H,(A*) = Z is induced by a holomorphic map if and only if
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®(y,) 20 for all pe A and ¥ ,¢(v,) - (1 —|p|) < . In particular it is
impossible to choose the values ¢ (y,) independently for infinitely many vy ,’s.
This is a general fact as we will see below.

THEOREM 5. Let X be a complex manifold and Y a complete hyper-
bolic manifold. Let A denote an infinite subset of Hy(X). Then for any
positive  function N:H,(Y)— R* there exists a positive function
p:A—R* such that L,oeaN(feY) - p(Y) < @ holds for all
fe Hol(X, Y).

Remark. For simplicity let us assume that A is countable though in fact
H, (X) itself is countable.

THEOREM 6. Let X be a complex manifold, Y a complete hyperbolic
manifold, xoe€ X and K C Y a compact subset. Let Hy denote the set
of all holomorphic maps f: X —Y with f(x) eK. Let a € H,(X) be
a homology class.

Then Hyg(0) = {fsxa: fe€ Hy} Is finite.

For the proof we need the following lemma.

LEMMA 3. Let Y be a differentiable manifold, K compact and
K=Y a sequence of continuous maps uniformly converging to
f:K—Y. Then for some N >0 all the maps f, with n>N are
homotopic to f.

Proof. We may endow Y with a Riemannian metric. Since f(K) is
compact, there is a number N such that for all x €e K and n > M f,(x) is
contained in a normal neighbourhood of f(x). Thus f,(x) = expsx (Z,(x))
with Z,(x) € T;. The desired homotopy is obtained by f, ;(x)

= expry(Zn(x)) O

Proof of theorem 6. Since Y is complete hyperbolic, Hol(X, Y) and Hg
are normal families. From the compactness of K it follows that Hg can not
contain a compactly divergent sequence. Hence any sequence f, € Hg
contains a subsequence converging uniformly on compact sets in X. Now every
homology class a has compact support. Thus the preceding lemma implies that
for every sequence f, € Hx there is a subsequence f,, such that f, xa
becomes stationary. This is only possible, if Hx(a) is finite. [

Proof of theorem 5. Let v, (neN) be an enumeration of A. Let K, be
an ascending sequence of compact subsets of Y with uU,K, =Y. Let



MAPPINGS BETWEEN RIEMANN SURFACES 151

H, = Hg,. Now Hol(X,Y) is the union of all H,. Now we choose
p(y,) € R* in such a way that

(*) N(fu(¥n))p(yn) <27

for all f e H,. (This is possible by theorem 6.) Finally note that any holo-
morphic map f € Hol(X,Y) is contained in some Hy. Since Hy C H,, for
N < M it follows that (*) holds for all » > N. This clearly implies

ZnN(f*Yn)p(Yn) < o, (]
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