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QUICK LOWER BOUNDS FOR REGULATORS
| OF NUMBER FIELDS

by Nils-Peter SKORUPPA

ABSTRACT. A short and simple proof for Zimmert’s lower bounds for
regulators of number fields is presented.

1. INTRODUCTION. Let K be an algebraic number field with r; real and 2r,
complex embeddings, let R denote its regulator and w its number of roots of
unity. The purpose of this note is to present a surprisingly short proof of the
following theorem.

THEOREM. For any real number s> 1 one has

R s(s—1
w e

s v’
) Y (S) exp (— §— (S)) ,
s~ 1 0%

Here vy(s) =2 "1I(s/2)1T'(s)"2, where T(s) denotes the gamma
Junction, and v'(s) is the derivative.
If we let s = 4/3 then we obtain

= 0.00299 - exp(0.48r, + 0.06r,) .

2™

From this one deduces that regulators of number fields are bounded from
below by an absolute constant and grow exponentially in the degree of K.

This result and an estimate similar to the one of the above theorem was
first stated and proved by Zimmert [Z, Satz 3 and Korollar]. He proved the
sharper estimate
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(to compare this inequality to the inequality as originally stated by Zimmert
one has to apply the gamma duplication formula). He chose s = 2 to obtain

R

— 2 0.02 - exp (0.467r, + 0.11,) .
w

Zimmert deduced his regulator bounds by an ingenious, but quite involved,

investigation of certain analytic properties of the partial Dedekind zeta

function associated to the class of principal ideals of K.

In this note we show that it is possible to deduce the above theorem by
a simple estimate from a certain, almost obvious, monotonicity property of
Hecke’s theta function associated to the maximal order of K (see below).
Moreover, we indicate below how this method of proof can be refined to yield
exactly Zimmert’s bounds. The technique of estimating which we apply is a
sort of simple variation of a method which is developped in [F-S] to obtain
lower bounds for LP-norms of a certain class of functions. It was found
during a careful analysis of Zimmert’s method and reflects, though it looks
much easier, still very much the spirit of Zimmert’s original proof.

2. PrROOF. Let ||, for 1 <j<r:=r +r denote the archimedean
absolute values of K, let G denote the r-fold direct product of the multiplicative
group of the positive reals R, , and let V denote the image in G of the units
of K under the map

ne G, nl¥, L),

where n; equals 1 or 2 accordingly as | - |; is real or complex. Denote by &
the group homomorphism

8:G—=Ry, 8((0,Xj,..) =X " " X .

Its kernel contains ¥V, and by Dirichlet’s unit theorem ker 8/V is compact. We
can thus fix a Haar measure p on G/V by requiring

R|” dt
s gOSdu=—§ g(t) —
G/V t

wilo
for any integrable function on R, . Let

Z(s) 1= v(s) EmINK/Qa,—S,

where 3R is a set of representatives for the non-zero elements of £, the ring
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of integers in K, modulo units. According to Hecke [H] (and according to the
choice of ) one has, for Re(s) > 1, the integral representation

Z(s) = s ®d5dn .
G/V

Here © is a smooth, non-negative and V-invariant function on G, which is

given by

00 = ¥ exp( Y o )

0eD j=1
o+0

The main observation for the proof of the theorem is the

LEMMA. The function (1+ ®)8 is increasing in each argument.

Proof. This follows from Hecke’s theta formula [H, p. 165-166]

_7'5524’2 ) 2 2/nj
(1+®(x))8(x)—ma€§_lexp( n,gl |o|7x )

i.e. by applying Poisson summation to the series defining ® (x) (here ® and
d denote the different and discriminant of K). [

We can now give the

Proof of the theorem. For a € R, set

I(a) : = S 1+0)8w(@dx)~1)du) ,
G/V

where we use
w(t) = t max (0, log(1/7)) ,

and where s > 1 as in the theorem.

For any € >0, one has w() = O(*) and |w(@+h) — w@)|/|h|
<|w'(t)|= O(t~*) as t = 0. Thus, using the convergence of the integral
representation of Z(s) for s > 1, we deduce that the integral defining I(a) is
finite, and, on applying Lebesgue’s theorem, that I(a) is differentiable and its
derivative is obtained by differentiating under the integral sign. Here we agree
to use w’(1) for the derivative on the right, i.e. w'(1) = 0.
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On replacing x by x/a'/" in the integral defining I(a) we deduce from the
lemma that I(a) is decreasing. Hence I’ (@) < 0, from which we obtain, writing
c=s5—1,

- _‘is Sw((ad)°)dp > ﬁs O3 w((ad)°)du
da ),y da

G/V

= cq°! 5 O&sw'((@d)°)du > — ca°-! s ®585(1 + log(ad)°)du
G/V

G/V
1 Z’

= —02a°"'Z(s) |[—+ loga+ — ()] .
o VA

By the choice of p the left-hand side equals Ro/(ws?a?). Multiplying the
above inequality by s%a?/c and then maximizing the right hand side,
i.e. choosing

1+1 +Z,() :
— oga+ — ()= ——,
c s Z s
we find
R s(s—-1) S A
(1) — > exp | — Z@)exp| —s— ()] .
e s —1 yA

w
Finally, Z(s) > y(s), since the Dirichlet series D(s) in the definition of Z(s)

4 7

z
satisfies D(s) > 1, and — (5) < Y (s), since D’(s) < 0. Thus, (1) implies the
Y

claimed inequality. [

3. CONCLUDING REMARKS. To obtain a lower bound as sharp as Zimmert’s

one can proceed as above, but with a variant ®, of the function ®. Namely,
fix a real number s > 1, and define ®;(x) by the same series as ® (x) but with
the term

exp (— ) |a Ijxjg/"j)

replaced by

I15Ualbx),

j=1
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where

21T () J,_ (£)/ £5~ ! for real | - |;

Ko =4 ==
21T (28) s 1 (/1) / 1 for complex | - |;.

Here J.(f) denotes the J-Bessel function of order s. Then (1 + ®,)8 is still
increasing in each argument, as can be proved by Poisson summation. The

1
integral of ©®,;8%, taken over G/V for any 1 <u<s+ E, equals Z;(u)

where Z,(u) is defined as Z(u) but with y(«) replaced by

ra

Vi (1) = (2u—1r(s)r (-;f) /T (252_ ”) )rl (22“F(2S)F(u)/r(25 _ u))

The same reasoning as above will lead then to a lower bound for R/w as in
the theorem, but with y replaced by v;.

The inequality (1) remains true if one replaces Z(s) by the product of any
partial Dedekind zeta function of X and y(s). It also remains true if Z(s) is
replaced by the (proper) Dedekind zeta function and R/w is multiplied by the
class number of K. As was pointed out by W. Kohnen it might be interesting
to study these inequalities for special classes of fields like, for instance, abelian
fields, where the Dedekind zeta function is of a rather simple shape.
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