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128 W. KOHNEN

The following questions therefore are suggestive:

1) if one starts with an arbitrary F € M/, y_,,2(I';), does the above limit
process produce skew-holomorphic Jacobi forms of weight k?

2) define My, ,_,,,(I,) as the subspace of M), «_1,2(I'2) consisting of the
intersection of the kernels of the operators @, for all primes p. Does there
exist a natural map V from skew-holomorphic Jacobi forms of weight k and
index 1 to M}, ,_,,,([;) similar as in the case of holomorphic Jacobi
forms?

Recently, N.-P. Skoruppa [36] has developed a theory of theta lifts from
skew-holomorphic Jacobi forms to automorphic forms on Sp,. It would be
interesting to investigate if his lifts would provide (at least partial) answers to
the above questions.

iii) So far a generalization of the Maass space to higher genus n > 2 has
not been given; in fact, in the general case it does not seem to be quite clear
what one has to look for, except that (the cuspidal part) of a ‘“Maass space’’
eventually should be generated by Hecke eigenforms which do not satisfy a
generalized Ramanujan-Petersson conjecture. Note that there is a partial
negative result by Ziegler [40, 4.2. Thm.] who showed by means of specific
examples that for » > 33 the map which sends a Siegel modular form of weight
16 on I', : = Sp,(Z) to its first Fourier-Jacobi coefficient is not surjective.

On the other hand, there are very interesting numerical calculations for
n = 3 due to Miyawaki [30] which suggest that a Siegel-Hecke eigenform F
of even integral weight & on I'; could be constructed from a pair (f, g) of
elliptic Hecke eigenforms of weights (k;, k,) equal to (k,2k—4) or
(k — 2, 2k — 2) such that the (formal) spinor zeta function of F should be equal
to Li(s—ky/2)Ls(s—ky/2+ 1)Lsg,(s) where L,g,(s) essentially is the
Rankin convolution of f and g ([loc. cit., §4]; note that for n > 2 the analytic
continuation of the spinor zeta function of a holomorphic Hecke eigenform
on I',, is not known).

§3. SPINOR ZETA FUNCTIONS

3.1. RESULTS

Although the Maass space S¥(I';) as discussed in the previous section is
an important subspace of S;(I';) in its own right, one quickly realizes that the
““true’’ Siegel cusp forms on I'; should lie in the orthogonal complement of
S#(T,) (cf. Theorem 2 in §2 and its discussion). Is is therefore even more
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surprising that forms in the Maass space can be used to study forms in
S*T,)* (in fact, spinor zeta functions of Hecke eigenforms in SF(I2)*)-
Thus the importance of the Maass space seems to g0 much beyond that what
is expected from §2.

Let F and G be Siegel cusp forms of integral weight k on I',. Denote by
O and Y, (m > 1) the Fourier-Jacobi coefficients of F and G, respectively
and define a formal Dirichlet series of Rankin-type by
(6) Dr g(s) 1= {(2s—2k+4) 21 < Oy Yp>m~*

m >

(this series was introduced by Skoruppa and the author in [18]).

A variant of the classical Hecke argument shows that
< Om, Um> <p gmk so that Dpg(s) is absolutely convergent for
Re(s) > k£ + 1. We put

D (s) 1= Q)T ()T (s — k +2)Dr,c(5) (Re@®)>k+1).

THEOREM 1 [18]. The function Dg g(s) has a meromorphic conti-

nuation to C which is holomorphic except for a possible simple pole of

residue

(k- 2)!

<F,G>

at s = k. Furthermore, the functional equation
D} 2k —2—35) = Df ;(5)
holds.

THEOREM 2 [18]. Let k be even. Let F e S (I;) be a Hecke
eigenform and G be a function in the Maass space S¥(I';). Then

Drp c(5) = < &1, Y1 > Zp(s) .

The proof of Theorem 1 is based on the Rankin-Selberg method applied
with an Eisenstein series of Klingen-type on Sp,. The proof of Theorem 2
uses Theorem 1 of §2 applied with ¢ a Poincaré series; furthermore, an explicit
formula for the action on Fourier coefficients of the operator V'* adjoint to
V.. w.r.t the Petersson scalar products and the relations due to Andrianov
[1, Chap. 2] between eigenvalues and Fourier coefficients of Hecke eigenforms
play an important role. Let us mention that Theorem 2 could also be deduced
from results of Gritsenko [13, p. 266].

In [38], Yamazaki using the theory of Eisenstein series a la Langlands
studied the analytic properties of generalizations to arbitrary genus »n of the
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series (6). Recently, Krieg [24] gave a more elementary proof of (some of) the
results of [38] using well-known properties of Epstein zeta functions. However,
it is clear from the I'-factors and the type of the functional equations that for
n > 2 there cannot be any direct connection between the series studied in
[24, 38] and spinor zeta functions.
1.2 PROBLEMS

i) Suppose that k is even. If F is a non-zero Hecke eigenform in S, (1),
is ¢; # 0? (This question was already asked in [33].) The answer is positive
for k < 32 as numerical computations due to Skoruppa [35] show. Note that
by Theorem 2 a positive answer gives a new proof for the analytic continuation
and the functional equation of Zg(s).

i1) Let F be a Hecke eigenform in S, (I";). The only critical point of Zz(s)
in Deligne’s sense is s = kK — 1, i.e. the center of symmetry of the functional
equation as is easily checked. Conjecturally therefore Zz(k — 1) should be
equal to the determinant of a ‘‘period matrix’’ times an algebraic number (one
may suppose that k is even since otherwise Zz(k — 1) = 0 as follows from the
sign in the functional equation). To the author’s knowledge, nothing so far
in this direction has been proved. Could Theorem 2 eventually be useful in
this context?

As a side remark, let us mention here that Bocherer [4] motivated by
Waldspurger’s results [37] about the central critical values of quadratic twists
of Hecke L-functions of elliptic Hecke eigenforms, for k even has conjectured
that the central critical value of the twist of Zz(s) by a quadratic Dirichlet
character of conductor D < 0 should be proportional to the square of

Z a(T) where a(T) are the Fourier coefficients of F and the
{T'>0}/~,discT=D

sum is over a set of I';-representatives of positive definite integral binary
quadratic forms 7 of discriminant D. This conjecture is true if F'is in the Maass
space as follows from Theorem 2 in §2 in connection with Waldspurger’s
results, cf. [4]. The conjecture when generalized to level > 1 is also true if the
corresponding form has weight 2 and is the Yoshida lift of two elliptic cusp
forms [6].

iiiy Let F be a cuspidal Hecke eigenform and assume that F is in
S¥@;)+ if k is even. Does the function Dg r(s) have any intrinsic
arithmetical meaning ? (This question was already asked in [33], too; note that
Dy (s) for F as above cannot be proportional to Zg(s) since Dy g(s) has a
pole at s = k while Zz(s) is holomorphic there, cf. §2). For some numerical
computations in this direction in the case k = 20 (the first case where
S#@,)* #{0}) we refer to [23].
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