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The following questions therefore are suggestive:

1) if one starts with an arbitrary Fe Mi/2tk-1/2(r2), does the above limit
process produce skew-holomorphic Jacobi forms of weight kl
2) define Mf/2 k_l/2(T2) as the subspace of i/2(r2) consisting of the
intersection of the kernels of the operators Wp for all primes p. Does there
exist a natural map V from skew-holomorphic Jacobi forms of weight k and
index 1 to 1/2 (T2) similar as in the case of holomorphic Jacobi
forms

Recently, N.-P. Skoruppa [36] has developed a theory of theta lifts from
skew-holomorphic Jacobi forms to automorphic forms on Sp2. It would be

interesting to investigate if his lifts would provide (at least partial) answers to
the above questions.

iii) So far a generalization of the Maass space to higher genus n > 2 has

not been given; in fact, in the general case it does not seem to be quite clear
what one has to look for, except that (the cuspidal part) of a 4'Maass space"
eventually should be generated by Hecke eigenforms which do not satisfy a

generalized Ramanujan-Petersson conjecture. Note that there is a partial
negative result by Ziegler [40, 4.2. Thm.] who showed by means of specific
examples that for n ^ 33 the map which sends a Siegel modular form of weight
16 on T„ : Sp„(Z) to its first Fourier-Jacobi coefficient is not surjective.

On the other hand, there are very interesting numerical calculations for
n 3 due to Miyawaki [30] which suggest that a Siegel-Hecke eigenform F
of even integral weight k on T3 could be constructed from a pair (/, g) of
elliptic Hecke eigenforms of weights {kx, k2) equal to (k, 2k - 4) or
(k -2,2k - 2) such that the (formal) spinor zeta function of F should be equal

to Lf(s - k2/2)Lf(s - k2/2 + \)Lf®g(s) where Lf®g(s) essentially is the

Rankin convolution of / and g {[loc. cit., §4] ; note that for n > 2 the analytic
continuation of the spinor zeta function of a holomorphic Hecke eigenform
on Tn is not known).

§3. Spinor zeta functions

3.1. Results

Although the Maass space S*(T2) as discussed in the previous section is

an important subspace of ^(r^ in its own right, one quickly realizes that the

"true" Siegel cusp forms on T2 should lie in the orthogonal complement of
5*(T2) (cf. Theorem 2 in §2 and its discussion). Is is therefore even more



SIEGEL MODULAR FORMS 129

surprising that forms in the Maass space can be used to study forms in

S*(Y2)x (in fact, spinor zeta functions of Hecke eigenforms in S*(r2)1 )•

Thus the importance of the Maass space seems to go much beyond that what

is expected from §2.

Let F and G be Siegel cusp forms of integral weight on T2. Denote by

<\>m and i) !m{m>1) the Fourier-Jacobi coefficients of F and G, respectively

and define a formal Dirichlet series of Rankin-type by

(6) Df,g(s) : (,(2s-2k +4)£< (J

m ^ 1

(this series was introduced by Skoruppa and the author in [18]).

A variant of the classical Hecke argument shows that

<<bm, Vm> <F,omk so that DFtG(s) is absolutely convergent for

Re(s) > k + 1. We put

D* g(s): (2n)-2sT(s)T(s-k + 2)DF,G(s) (Rq(s) > k 4- 1)

Theorem 1 [18]. The function DFiG(s) has a meromorphic
continuation to C which is holomorphic except for a possible simple pole of
residue

^ k k + 2

<F,G>
(k-2)1

at s k. Furthermore, the functional equation

D*G(2k-2-s)^D*FG(s)
holds.

Theorem 2 [18]. Let k be even. Let F e Sk(T2) be a Hecke

eigenform and G be a function in the Maass space 5*(T2). Then

DFtG(s) < 4)1, V|/! > Zp(s)

The proof of Theorem 1 is based on the Rankin-Selberg method applied
with an Eisenstein series of Klingen-type on Sp2. The proof of Theorem 2

uses Theorem 1 of §2 applied with (j) a Poincaré series; furthermore, an explicit
formula for the action on Fourier coefficients of the operator V* adjoint to
Vm w.r.t the Petersson scalar products and the relations due to Andrianov
[1, Chap. 2] between eigenvalues and Fourier coefficients of Hecke eigenforms
play an important role. Let us mention that Theorem 2 could also be deduced

from results of Gritsenko [13, p. 266].
In [38], Yamazaki using the theory of Eisenstein series à la Langlands

studied the analytic properties of generalizations to arbitrary genus n of the
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series (6). Recently, Krieg [24] gave a more elementary proof of (some of) the
results of [38] using well-known properties of Epstein zeta functions. However,
it is clear from the T-factors and the type of the functional equations that for
n > 2 there cannot be any direct connection between the series studied in
[24, 38] and spinor zeta functions.

1.2 Problems
i) Suppose that k is even. If F is a non-zero Hecke eigenform in S^(r2),

is (J>i 0? (This question was already asked in [33].) The answer is positive
for k ^ 32 as numerical computations due to Skoruppa [35] show. Note that

by Theorem 2 a positive answer gives a new proof for the analytic continuation
and the functional equation of ZF(s).

ii) Let F be a Hecke eigenform in Sk(T2). The only critical point of ZF(s)
in Deligne's sense is s k - 1, i.e. the center of symmetry of the functional
equation as is easily checked. Conjecturally therefore ZF(k - 1) should be

equal to the determinant of a 4'period matrix" times an algebraic number (one

may suppose that k is even since otherwise ZF(k - 1) 0 as follows from the

sign in the functional equation). To the author's knowledge, nothing so far
in this direction has been proved. Could Theorem 2 eventually be useful in
this context?

As a side remark, let us mention here that Böcherer [4] motivated by
Waldspurger's results [37] about the central critical values of quadratic twists
of Hecke F-functions of elliptic Hecke eigenforms, for k even has conjectured
that the central critical value of the twist of ZF(s) by a quadratic Dirichlet
character of conductor D < 0 should be proportional to the square of

Y, a(T) where a(T) are the Fourier coefficients of F and the
{T> 0}/~ ,disc T D

sum is over a set of Ti-representatives of positive definite integral binary
quadratic forms Tof discriminant D. This conjecture is true if Fis in the Maass

space as follows from Theorem 2 in §2 in connection with Waldspurger's
results, cf. [4]. The conjecture when generalized to level > 1 is also true if the

corresponding form has weight 2 and is the Yoshida lift of two elliptic cusp
forms [6].

iii) Let F be a cuspidal Hecke eigenform and assume that F is in

S%(T2)± if k is even. Does the function DFJF(s) have any intrinsic
arithmetical meaning? (This question was already asked in [33], too; note that

Df>f{s) for F as above cannot be proportional to ZF(s) since DF F(s) has a

pole at s k while ZF(s) is holomorphic there, cf. §2). For some numerical

computations in this direction in the case k 20 (the first case where

S*(T2)^ * {0}) we refer to [23].
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