Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 39 (1993)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: JACOBI FORMS AND SIEGEL MODULAR FORMS: RECENT

RESULTS AND PROBLEMS

Autor: Kohnen, Winfried

Kapitel: 2.1. Results

DOI: https://doi.org/10.5169/seals-60416

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

only on the discriminant $D := r^2 - 4mn$ and the residue class $r \pmod{2m}$. The Petersson scalar product on $J_{k,m}^{\text{cusp}}$ is normalized by

$$\langle \phi, \psi \rangle = \int_{\Gamma_1^J \setminus \mathcal{H} \times C} \phi(\tau, z) \overline{\psi(\tau, z)} \exp(-4\pi m y^2 / v) v^{k-3} du dv dx dy$$

$$(\tau = u + iv, z = x + iy).$$

For basic facts about Jacobi forms we refer to [9].

§2. THE MAASS SPACE

2.1. RESULTS

Let F be a Siegel modular form of integral weight k on Γ_2 and write the Fourier expansion of F in the form

(1)
$$F(Z) = \sum_{m \geq 0} \phi_m(\tau, z) e^{2\pi i m \tau'} \qquad \left(Z = \begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix} \in \mathcal{H}_2 \right).$$

Using the injection

(2)
$$\Gamma_1^J \to \Gamma_2$$
, $\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, ((\lambda, \mu), \kappa)\right) \mapsto \begin{pmatrix} a & 0 & b & \mu \\ \lambda' & 1 & \mu' & \kappa \\ c & 0 & d & -\lambda \\ 0 & 0 & 0 & 1 \end{pmatrix}$

where $(\lambda', \mu') = (\lambda, \mu) \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, and the transformation formula of F it is easy to see that the functions ϕ_m are in $J_{k,m}$. The expansion (1) is referred to as the Fourier-Jacobi expansion of F.

Thus for any $m \in \mathbb{N}_0$ we obtain a linear map

$$\rho_m: M_k(\Gamma_2) \to J_{k,m} , F \mapsto \phi_m .$$

Note that ρ_0 is equal to the Siegel Φ -operator.

We shall be interested in the case m = 1. For k odd, ρ_1 is the zero map; in fact, any Jacobi form of odd weight and index one must vanish identically as is easily seen.

For k even, ρ_1 was studied in detail by Maass [28, 29] who showed the existence of a natural map $V: J_{k,1} \to M_k(\Gamma_2)$ such that the composite $\rho_1 \circ V$ is the identity. More precisely, let $\phi \in J_{k,1}$ with Fourier coefficients c(n, r) $(n, r \in \mathbb{Z}; r^2 \leq 4n)$ and for $m \in \mathbb{N}_0$ define

$$(4) \qquad (V_m \phi) (\tau, z) := \sum_{n, r \in \mathbb{Z}, r^2 \leqslant 4mn} \left(\sum_{d \mid (n, r, m)} d^{k-1} c \left(\frac{mn}{d^2}, \frac{r}{d} \right) \right) q^n \zeta^r$$

(if m = 0, the term $\sum_{d \mid 0} d^{k-1}c(0, 0)$ on the right of (4) has to be interpreted

as $\frac{1}{2}\zeta(1-k)$; note that $V_1\phi=\phi$). Using a more invariant definition of V_m in terms of the action of a set of representatives for $\Gamma_1\setminus\{M\in\mathbf{Z}^{(2,2)}\,\big|\,\det M=m\}$ one checks that $V_m\phi\in J_{k,m}$ [9, §4]. Put

$$(V\Phi)(Z):=\sum_{m\geqslant 0}(V_m\Phi)(\tau,z)e^{2\pi im\tau'} \qquad \left(Z=egin{pmatrix} au & z \ z & au' \end{pmatrix}\in\mathscr{H}_2
ight).$$

We denote by $T_n(n \in \mathbb{N})$ the usual Hecke operators on $M_k(\Gamma_2)$ resp. $S_k(\Gamma_2)$ [12, IV; 1, II]; thus, if p is a prime, T_p resp. T_{p^2} correspond to the two generators

$$\Gamma_2 \begin{pmatrix} 1_2 & 0 \\ 0 & p1_2 \end{pmatrix} \Gamma_2 \text{ resp. } \Gamma_2 \operatorname{diag}(1, p, p^2, p) \Gamma_2$$

of the local Hecke algebra of Γ_2 at p. We denote by $T_{J,n}(n \in \mathbb{N})$ the Hecke operators on $J_{k,m}$ resp. $J_{k,m}^{\text{cusp}}$ [9, §4].

THEOREM 1. (Maass [28, 29], Andrianov [2]). Suppose that k is even. The map $\phi \mapsto V \phi$ gives an injection $J_{k,1} \to M_k(\Gamma_2)$ which sends cusp forms to cusp forms and is compatible with the action of Hecke operators. If p is a prime, one has $T_p \circ V = V \circ (T_{J,p} + p^{k-2}(p+1))$ and $T_{p^2} \circ V = V \circ (T_{J,p}^2 + p^{k-2}(p+1))T_{J,p} + p^{2k-2})$.

The image of $J_{k,1}$ under V is called the Maass space and will be denoted by $M_k^*(\Gamma_2)$. One knows that $M_k^*(\Gamma_2) = \mathbf{C}E_k^{(2)} \oplus S_k^*(\Gamma_2)$ where $E_k^{(2)}$ is the Siegel-Eisenstein series of weight k on Γ_2 and $S_k^*(\Gamma_2) := M_k^*(\Gamma_2) \cap S_k(\Gamma_2)$. Observe that $\dim M_k^*(\Gamma_2) = \dim J_{k,1}$ grows linearly in k while $\dim M_k(\Gamma_2)$ grows like k^3 .

Note that Theorem 1 implies that $M_k^*(\Gamma_2)$ is stable under all Hecke operators and that it is annihilated by the operator

(5)
$$\mathscr{E}_p := T_p^2 - p^{k-2}(p+1)T_p - T_{p^2} + p^{2k-2},$$

for every prime p.

Let $F \in M_k(\Gamma_2)$ be a non-zero Hecke eigenform and denote by $\lambda_n (n \in \mathbb{N})$ its eigenvalues under T_n . If p is a prime, we put

$$Z_{F,p}(X) := 1 - \lambda_p X + (\lambda_p^2 - \lambda_{p^2} - p^{2k-4})X^2 - \lambda_p p^{2k-3}X^3 + p^{4k-6}X^4$$

so that $Z_{F,p}$ (p^{-s}) $(s \in \mathbb{C})$ is the local spinor zeta function of F at p. We put

$$Z_F(s) := \prod_p Z_{F,p}(p^{-s}) \quad (\operatorname{Re}(s) \gg 0).$$

One has

$$Z_F(s) = \zeta(2s - 2k + 4)^{-1} \sum_{n \ge 1} \lambda_n n^{-s} \quad (\text{Re}(s) \ge 0).$$

If F is an Eisenstein series, then it is well-known that $Z_F(s)$ can be expressed in terms of products of Hecke L-functions of elliptic modular forms.

Suppose that F is cuspidal. Then it was proved in [1, Chap. 3] that $Z_F(s)$ has a meromorphic continuation to \mathbb{C} which is holomorphic everywhere if k is odd and is holomorphic except for a possible simple pole at s = k if k is even. Moreover, the global function $Z_F^*(s) := (2\pi)^{-s}\Gamma(s)\Gamma(s-k+2)Z_F(s)$ is $(-1)^k$ -invariant under $s \mapsto 2k-2-s$.

Let $M_{2k-2}(\Gamma_1)$ be the space of modular forms of weight 2k-2 on Γ_1 . Recall that a Hecke eigenform in $M_{2k-2}(\Gamma_1)$ is called normalized if its first Fourier coefficient is equal to 1.

THEOREM 2 (Saito-Kurokawa conjecture; Andrianov [2], Maass [28, 29], Zagier [39]). Let k be even and let F be a non-zero Hecke eigenform in $M_k^*(\Gamma_2)$. Then there is a unique normalized Hecke eigenform f in $M_{2k-2}(\Gamma_1)$ such that

$$Z_F(s) = \zeta(s-k+1)\zeta(s-k+2)L_f(s)$$

where $L_f(s)$ is the Hecke L-function attached to f.

Theorem 2 in particular shows that $Z_F(s)$ has a pole at s = k if F is a Hecke eigenform in $S_k^*(\Gamma_2)$. The converse is also true as shown by Evdokimov [10] and Oda [31], i.e. the function $Z_F(s)$ is holomorphic everywhere if and only if F lies in the orthogonal complement of $S_k^*(\Gamma_2)$.

Using Theorem 2 one can show that $M_k^*(\Gamma_2) = \bigcap_p \ker \mathcal{O}_p$ where \mathcal{O}_p is defined by (5). Finally let us mention that Theorem 2 implies that a Hecke eigenform F in $S_k^*(\Gamma_2)$ does not satisfy the generalized Ramanujan-Petersson conjecture which would require that $\lambda_n \ll_{\varepsilon, F} n^{k-3/2+\varepsilon}$ ($\varepsilon > 0$).

The proof of Theorem 1 is based on the fact that the function $V\phi$, by definition, is symmetric w.r.t. τ and τ' and that Γ_2 is generated by the matrix

diag
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (which acts on \mathcal{H}_2 by interchanging τ and τ') and

the image of Γ_1^J under the map (2). For the compatibility statement of V with Hecke operators one has to check the action of the latter on Fourier coeffi-

cients. The proof of Theorem 2 is based on a trace formula. We do not give here any more details. Good expositions can be found in [9] and [39].

2.2. PROBLEMS

- i) Since for fixed k the dimension of $J_{k,m}$ grows linearly in m, the map ρ_m defined by (3) for $m \gg_k 0$ cannot be surjective. Is there any simple or nice description of the image of ρ_m or $(im \rho_m | S_k(\Gamma_2))^{\perp}$? Let us mention here that one can express the Fourier-Jacobi coefficients of Poincaré series of exponential type on Γ_2 which generate $S_k(\Gamma_2)$, as certain infinite linear combinations of Poincaré series on Γ_1^J [22]. Taking scalar products one obtains a characterization of $(im \rho_m | S_k(\Gamma_2))^{\perp}$ as the kernel of certain infinite systems of linear equations. This description, however, does not seem to be very illuminating (for example, it does not imply in any obvious way that ρ_1 is surjective).
- ii) A skew-holomorphic Jacobi form of weight $k \in \mathbb{Z}$ and index $m \in \mathbb{N}_0$ on Γ_1^J as introduced by Skoruppa is a complex-valued C^{∞} -function $\phi(\tau, z)$ ($\tau \in \mathcal{H}, z \in \mathbb{C}$) satisfying the following properties: 1) ϕ is holomorphic in z and is annihilated by the heat operator $8\pi im\theta/\partial \tau \frac{\partial^2}{\partial z^2}$; 2) ϕ satisfies the same transformation formula under Γ_1^J as a holomorphic Jacobi form of weight k and index m (cf. §1.2) except that the factor $(c\tau + d)^k$ has to be replaced by $(c\bar{\tau} + d)^{k-1} | c\tau + d |$; 3) ϕ has a Fourier expansion of type

$$\phi(\tau,z) = \sum_{n,r \in \mathbb{Z}, r^2 \geq 4mn} c(n,r) \exp\left(-\pi \frac{r^2 - 4mn}{m} v\right) q^n \zeta^r \quad (v = \operatorname{Im}(\tau)).$$

Note that a skew-holomorphic Jacobi form of even weight and index 1 is identically zero as is easily seen.

Despite of the importance of skew-holomorphic Jacobi forms as demonstrated in [34, 36] it is not quite clear so far how they are related to Siegel modular forms. One difficulty, for example, is that if one starts with a real-analytic Siegel modular form of genus 2, the coefficients of the partial

Fourier expansion of F(Z) w.r.t. $e^{2\pi i \tau'}$ (where as usual $Z = \begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix}$) not

only depend on τ and z but also on $\text{Im}(\tau')$, and it is a priori not obvious how to get rid of the latter variable and to produce "true" Jacobi forms.

Let k be an odd integer and denote by $M_{1/2, k-1/2}(\Gamma_2)$ the space of Siegel-Maass wave forms "of type (1/2, k-1/2)" as defined in [26], i.e. the space of real-analytic functions $F: \mathcal{H}_2 \to \mathbb{C}$ which satisfy

$$F(M < Z >) = \det(C\bar{Z} + D)^{k-1} | \det(CZ + D) | F(Z)$$