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122 W. KOHNEN

tions F\2tf2~* C satisfying F(M< Z >) det (CZ F D)kF{Z) for all

M ^j e r2. Such a function has a Fourier expansion

F(Z) £
T T' ^ 0

where T runs over all positive semi-definite half-integral (2, 2)-matrices. We

write Sk(T2) for the subspace of cusp forms (require a(T) 0 for T > 0).

For F, G e Sk(T2) we denote by

<F,G> J F(Z)G(Z) (det Y)k~3dX(XRe(Z), Im(Z))
r2\ <^2

the Petersson scalar product of F and G.

For basic facts on Siegel modular forms we refer to [12, 17].

1.2. Jacobi forms

We write for the complex upper half-plane. We let //(R) be the

Heisenberg group, i.e. the set of triples ((X, p), k) e R2 x R with group law
((X, p), k) ((X', p'), k') ((X F X\ p F p'), k F k' f X\i' - X'p), and denote

by GJ : SL2{R) x //(R) the Jacobi group where SL2(R) operates on H(R)
from the right by ((X, p), k)M ((X, p)M, k). The group GJ acts on x C

by

((' "X H--)) ° (t, z)
ax + b z + Xx F p

(ci + d cx + d

We set Ti : SL2(Z), Tf : x H(Z) and for k e Z and me N0

denote by Jkym the space of Jacobi forms of weight k and index m on r(, i.e.
the space of holomorphic functions $ : x C -> C satisfying the transformation

formula

(/c(z F 'Xx F Li)^ \ \
27lim I — A.2t - 2Xz\ I (J)(t, z)

for all y e rf and having a Fourier expansion

<|>(t,z)= L c(n,r)q"^r
n, r e Z, r2 < 4m«

where q e27r/T, Ç e2niz • We write for the subspace of cusp forms

(require c(n, r) 0 for r2 4/72«). Note that the coefficients c{ns r) depend
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only on the discriminant D : r1 - 4mn and the residue class r(mod2ra).

The Petersson scalar product on Jis normalized by

< (J), y > j <J)(t, z)vj/(t, z) exp(- 4nmy2/u)uk 3dududxdy

rf\ Jfx c

(t u + w y z x + iy)

For basic facts about Jacobi forms we refer to [9].

§2. The Maass space

2.1. Results

Let F be a Siegel modular form of integral weight k on T2 and write the

Fourier expansion of F in the form

(1) F(Z) £ c»m(T ,z)e2«i'\Z=yI e 5T2
m > 0 \ \Z T /

Using the injection

(2) r( - r,, II® ((X., n), k)

where (kr, \i') (k, p) \ | and the transformation formula of F it is
\c dj

easy to see that the functions §m are in Jk>m. The expansion (1) is referred to

as the Fourier-Jacobi expansion of F.
Thus for any me N0 we obtain a linear map

(3) Pm : Mk(T2) jk, m 4>m

Note that p0 is equal to the Siegel O-operator.
We shall be interested in the case m 1. For k odd, pi is the zero map;

in fact, any Jacobi form of odd weight and index one must vanish identically
as is easily seen.

For k even, pj was studied in detail by Maass [28, 29] who showed the
existence of a natural map V: JkA ~* Mk(r2) such that the composite pi o V
is the identity. More precisely, let $ e Jkti with Fourier coefficients c(n, r)
(n, r e Z ; r2 ^ 4n) and for me N0 define

(a 0 b \x i

r 1 \i' K

c 0 d -X
\o 0 0 1
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