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DENSITY RESULTS
ON FAMILIES OF DIOPHANTINE EQUATIONS
WITH FINITELY MANY SOLUTIONS

by P. RIBENBOIM

In this paper, we shall consider families of diophantine equations, each
having only finitely many solutions. Due to relations between the solutions of
these equations, it is possible to deduce density results.

For the convenience of the reader, we first gather the required facts
concerning uniform density and asymptotic density of sets of natural numbers.

The second section consists of applications of Faltings’ theorem. We work
with families of homogeneous polynomials satisfying very mild conditions,
which imply that the associated plane homogeneous curves are smooth. The
key for the application is an easy lemma by Filaseta. The density results
obtained are interpreted and discussed in special cases, which concern
differences and sums of powers.

The final section is about applications of a theorem of Schinzel and
Tijdeman. We discuss the density results obtained, in face of Erdds’ conjecture
that there do not exist three consecutive powerful numbers.

1. In this first section we explain the concept of uniform density,
following very closely, for the convenience of the reader, the recent paper of
Brown and Freedman [B-F].

For t,ke N, t>0,let I, ,={meN|k+1<m<k+t)
and let % = {I; ,| k € N}.

For each subset E of N, and 7 € N, let 6,(E) (resp. o,(E)) be the
largest (resp. smallest) integer s such that there exist infinitely_many keN

for which #(En I, ;) = s.

So o:(E) = limsup #(En I ,),
k

o.(E) = lminf #(E N I ,) .
k
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Thus 0 < o,(E) < 6,(E) < 1.

Also, if 0<t<wu, then o,(FE)<o,(E) and o,(E) < 6,(E). For
0<1t0< u, we have

gt+u(E)

)

o:(E) + ou(E) ,
c—51‘+u(Ev 6

=
< 0/(E) + o4 (E),
the proof being easy.

E
It follows that lim,., 25

exists; it is denoted by p(E) and called
the lower uniform density of E.

We give the proof since it is less obvious. Let ¢, u > 0; we write

t=qu+r, with 0<r<u. Then t> qu, hence by the facts quoted,
6:(E) =2 04, (E) = qgo,(E).

So
o,(E) S qo.(E)
t T (g+Du’
Then
u(E u(E
liminfgt(t ) S timint 2 &E) _o®)
] -

g~ g+ 1 u u
Since this holds of every u > 0, then

. . .0y
lim inf =
t !

c,(E
> lim sup = &)

u Uu
and the limit exists.

o _
Similarly, lim, - o ’—t— exists; it is denoted by p(E) and called the upper
uniform density of E.
Clearly 0 < p(E) < p(E) < L. If p(E) = p(E), this number is denoted
by n(E) and called the uniform density of E.

The lower asymptotic density of E is

#(ENT
$(E) = liminf 7L 100

{t— oo t

the upper asymptotic density of E is

_ #(En 1
S8(E) = lim sup En O’t).
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We have 1(E) < 8(E) < 8(E) < iL(E).

If 8(E) = 8(E), this number is denoted by &(E) and called the
aSymptaz‘ic density of E. .

It follows that if E has uniform density p(E), then it has asymptotic
density, and they are equal: u(E) = 8(E).

The following example illustrates the fact that a set £ may have asymptotic
density, but not uniform density. |

(o]

Let E= U I3,402,4n+3- Then, an easy calculation gives p,_t(E) = 0,

n=20

L(E) = 1, while 5(E) = ;.

o

If E" is the complement of E in N.g, that is E' = U In2,4n+1, then

n=20

RE) =0, p(E)=1,8(E) =3.

Thus, it is possible to have a set E and its complement with
W(E) = p(E’) = 0, or also p(F) = L(ED = 1.

Since 6,(E) = t — o,(E’), then u(E) = 1 if and only if p(E’) = 0.

It is also easy to see that if E has asymptotic density, so does E’, and
S(E) + d(E’) = 1.

Still following Brown and Freedman, we indicate some easy properties:

1) fEcFandve{u,i,d,35,u,8} then v(E) < v(F).

2) For any sets E,F C N.g and v € {f, 5, uw, 8}, we have

VIEUF) K V(E) + V(F).

e) Suppose that the arithmetic progressions A4; = {a; + kd;| k > 0}
n

(fori =1, 2, ..., n) are disjoint subsets of N.,. Then A = U A, has uniform
i=0
density

n]
A=Y =,
n(A4) ,-gld,-

The following lemmas from [B-F] will be used:

LEMMA 1. Let P be a finite set of prime numbers and Np the set of

natural numbers not divisible by any p e P. Then N, has uniform
density

nNp) = ]I (1 —~1-) :

peP V4
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For the proof, see [B-F].
If n>0and E C N, let E, = {m € E|n divides m}.

LEMMA 2. Let E be a subset of N.,.
i) If P is a finite set of primes, such that Ww(E,) =0 for every p e P,
_ 1
then [(E) < [] (1 - —) ;
peP p
iiy If P = {pprime|ny < p} (for some integer n,, and W&, =0 for
every pe P, then p(E) =0.

Proof. For the convenience of the reader, we repeat the proof given by
[B-F].
1) Since EC U E, U Np, then n(E) < ( U E, uNp) < Y, ph(Ep)

peEP DEP
_ _ 1
+ BVp) = B(Np) = ] (1 - ;) :

ii) Let € > 0. As it is known, there exists s such that if P = {p prime | no

1 _
< p < s} then H (1 - —) < e. By (1), n(EF) < e. This shows that

peEP D

wE) =0. U

We shall also consider asymptotic densities of subsets S of N” (where
m > 2). The lower (respectively upper) asymptotic density of S are defined

as follows: 4SO
6(S) = liminf "
- M- o Mm
- # S(M)
6(S) = lim su ,
(S) M_’mp e

where S(M) = {(s1, ...,Sm) € S|1 <s;< M for each i =1, ..., m}.

Clearly &(S) < S(S). If 8(S) = S(S), this number is called the asymptotic
density of S and denoted by &(S).

At the end of this paper, we shall use a density relative to a sequence of
natural numbers; the densities considered up to now are relative to the
sequence {1, 2,3, ...}.

Let 0<ow(l)<w@)< - --- be a sequence of natural numbers,
let EC N.o. Ift 21, let

61.0(E) = liminf # (E n {0k + 1), 0k +2), ..., 0 (k + H})
k

G oE) =limsup # (En{ok+1),0k+2),...,0k+1)}).
k
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The following limits exist

o) = tim 2228 ) = tim 20D

t— o t — oo

and are called respectively, the lower (upper) uniform density of E, relative
to . If pe(E) = iy (E), this number is denoted by u,(E) and called the
uniform c?ensity of E relative to .

The relative densities satisfy the same properties indicated for the densities.
In particular, we note that if E’ is the complement of E in N.,, then
Le(E) =1 if and only if p,(E£’) = 0.

If p is any prime number, let E, , = E N {0 (pn) |n>1}and if Pis a

finite set of distinct primes, let Np, = Nso\ U {w(pn)|n > 1}. Then
peP

1
Ho(Np, o) = H (1 __) .

peP D

Finally, we shall also need:

If po(E,,») = 0 for every prime p, then p,(E) = 0.

We leave to the reader the verification that the density relative to w satisfies
indeed these properties.

The following lemma is well-known and very simple to prove (see [P-R]
which has a proof of a special case):

LEMMA 3. Let P beasetof t>1 pairwise relatively prime positive
integers, let m > 1,M > 1 and let Rp pr.m = {(ky, ko, o0y k) |1 S ki < M
for every i, and there exists ne P such that nl|k,n|ky,...,n|kn}.
Then

1
#(RP,M,m)>Mm [1_ H (1——)] —mMm-1x 2t

neP nm

2. In this section we shall use the theorem of Faltings. Appealing to a
clever idea of Filaseta [F], we obtain an extension of previous results (which
were also derived using Filaseta’s argument) by Granville [G 1], Heath-Brown
[H-B], Powell and Ribenboim [P-R] and Brown and Freedman [B-F].

Let f € Z[X, Y, Z] be a non-constant homogeneous polynomial, denote by
C(f) the curve of zeroes of f in P,(C).

For every n > 1, let f,(X, Y, Z) = f(X", Y", Z").

The following lemma — which I acknowledge gratefully to J. Top — holds:
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LEMMA 4. If the curve C(f) is smooth, the following conditions are
equivalent.

1) Forevery n>=2, thecurve C(f,) is smooth.
2) There exists n =2 such that C(f,) is smooth.
3) Conditions (a) and (b) are satisfied:
(@) C(f) contains no point with two coordinates equal to 0;

(b) at each point of C(f) with one coordinate equal to 0, each
one of the partial derivatives relative to the other coordinates does
not vanish.

The proof, which is a simple exercise, is omitted.

Note also that if C(f) is smooth, then f is absolutely irreducible. Indeed,
if f = gh, with g, A non-constant polynomials in C[X, Y, Z], the plane curves
C(g), C(h) must have at least one point of intersection, and at that point, the
partial derivatives of f = gh would all vanish.

Let f e Z[X, Y, Z] be a non-constant homogeneous polynomial such that
the curve C(f) is smooth and satisfies conditions (a), (b) of the above lemma.

1 if deg(f) > 1

Let ny = )
3if deg(f)=1.

If n > ng, the genus of the curve C(f,) is equal to

[ndeg(f) — 1] [ndeg(f) — 2] S
2

1.

Here is the lemma of Filaseta:

LEMMA 5. Under the above hypotheses and notations, if n > ng
there exists an integer N(n) > 1 such that if k> N(n),L,m=>=1 and
fckn, yin zmmy = 0, with x,y,z relatively prime, then |x|< 1.

Proof. Since n > ny, the curve C(f,), which is smooth, has genus
greater than 1. By Faltings’ theorem, there exist only finitely many triples
of relatively prime integers (x;, y;, z;), such that f,(x;,y:,z)) = 0. Let N(n)
= max; { | x|, |7, |z |}.

If x, y, z are relatively prime integers such that f(x*?, y'#, z™") = 0, then
fa(xk, y!, zm) = 0. Hence there exists i such that x* = x;, y/ = y;, 2™ = z;,
and so | x|¥ < N(n) < k. This implies that |x|< 1. [
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In particular, if it is assumed that k > N(n) and / > N(n), then lxy|< 1.
Similarly, if k, [, m > N(n), then | xyz| < 1.
Let

F = {k > 1|if x, y, z are relatively prime integers
such that f(x*, y*, z¥) = 0, then | xyz|< 1}.

PROPOSITION 1. The set F has uniform density w(F) = 1.

Proof. Let F’ be the complement of Fin N ,; we show that u(F’) = 0.

For each prime p > no, the set F, = {k € F'|p divides k} is finite.
Indeed, if k¥ = np, where n > N(p), by lemma 5, k € F, so k ¢ F'.

By Lemma 2, u(F’) = 0, and by a previous remark, p(F) = 1. [

In particular, F has asymptotic density & (F) = 1. The proposition may be
applied to many polynomials, and was known in special cases.

1°) The proposition is applicable to f = aX + bY — cZ, where q, b, c are
non-zero integers.

In particular, if @ = b = ¢ = 1, the proposition concerns Fermat’s last
theorem. Noting that if f = X + Y — Z, then f(x*, y%, z¥) # 0 when k > 3,
xyz#0 and |x/|,|y]| or |z]| is equal to 1, then proposition 1, in this
particular case was given by Brown and Freedman. The proof that §(F) = 1
was given, independently, by Granville [G1] and Heath-Brown [H-B].

2°) f=X?*+4+ Y2+ 2722+ XY+ YZ + XZ. 1t is easy to verify that the
proposition is applicable.

3°) f=X3+Y3+7Z3—-aXYZ, where a+3,—1. Again C(f) is
smooth and satisfies the conditions (a), (b) of the lemma 1, and the proposition
holds.

4°) More generally, let g € Z[Y, Z] be a homogeneous polynomial of
degree d>=1, g(Y,Z2)=a Y +a, Y 'Z+ -+ +a;_YZ9" ' 4+ q,77.

Y
Assume apay; # 0 and also that the polynomial Z9g (E) is irreducible; hence

YA
Yig (?) is also irreducible. Let f = cX9 — g(Y, Z) (with ce Z, c # 0), so f

is a non-constant homogeneous polynomial. In view of the above hypotheses,
the curve of f is smooth and the conditions (a), (b) are satisfied, so the
proposition is applicable.

We shall now indicate other density results. For every k > 1, let D,
={(,m)|1<,m; if x, v,z are relatively prime integers such that
Sk, !, zm) = 0, then | x| < 1}.
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We note at once that F C {k|Dy+# @}; indeed, if k e F, then
(k, k) € Dy. By proposition 1, the set {k | Dy # &} has uniform density 1.

We are tempted to believe that the subset {k|8(Di) = 1} has also
uniform density 1. However, we can only prove weaker results. For each
0,0< a<l1,let H, ={k|8(D) < a} and P, = {pprime | o < 1/p?}.

PROPOSITION 2. If 0<a <1, then for each € >0

1
pH,) < 1l (1——)-

ng<peEPy,g p

In particular, the set H,= {k| d(Dy) = 0}  has uniform density
u(Ho) = 0.

Proof. We show that if pe P,,, and ny < p, then u((H,),) = 0;

_ 1
by lemma 2, this implies that p (H,) < I1 (1 — ——) .
ng<pePysg p
It suffices to show that if no < p € P, , ¢ and if k > N(p) (as defined in

lemma 5), then kp ¢ H,; thus (H,), is finite and therefore p((H,),) = 0.

So, we show that if no<p e Py, and k > N(p), then 8(Dy,) > a.
LO 2 20 + €

2 —_

Lo+ 1 2(a + €)
pL<M<p(lL+1), where Lo< L, for every Im>1, if x,y,z are
relatively prime integers and f(x*?,y’,zmP) =0, then |x|< 1; thus

Let L, be sufficiently large, say ( . If k> N(p) and

M1:2
(Ip, mp) € Dy,. Hence # Dy,(M) > [——] > L2. So
p

D, (M L2 1 L 2 20 +
# Dyp ( )> >_2( 0 ) S a+ e €
p

= =z = 2“ - —,
M? p2(L + 1)2 Ly+1 2p%(a + €) 2

. . 1
Thus, 8(Dy,) > a. Since lim, - g H (1 ——) = 0, then n(H,) = 0. [

ng<peP; D

We may also state the last assertion as follows: the set Hy = {k > 1 | & (Dx)
> 0} has uniform density equal to 1.

We give explicitly some applications.

First, let f = X — Y + Z. Now D, = {(/, m)| no difference y' — z™, with
non-zero relatively prime integers y, z is equal to a k** power (different from
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0, = 1)}. Then, with uniform density equal to 1, we have (D) > 0.

Here it should be recalled that according to Tijdeman’s theorem [T], there
exists an effectively computable constant 7, such that if 1 = y/ — z” (with
vwz=21,L,m>2),then y,z,, m< T.

If f=X - Y — Z, then D, = {(/, m) | no sum y’ + z, with non-zero y, z
relatively prime, is equal to a k& power}. Then, with uniform density 1, we
have 8(Dy) > 0.

We continue with density results for other sets. For [, m > 1, let Ey n
= {k > 1|if x, y, z are relatively prime integers such that f(x*, y!,z™) = 0,
then | yz | < 1}.

Let

I={(0m|1<Lm and &(Eym) > 0}.
We note that the set F, previously defined satisfies the inclusion

FC U Egm.

1<I,m

Indeed, if k € F, then k € E(k,k)-
Let

25
Be) = E if deg(f) =1

1if deg(f)>2.
As usual, p; = 2, p, = 3, p; = 5, ... is the sequence of primes.

PROPOSITION 3.  With above hypotheses and notations,

6h®

7T2

>0.

5D >1-

Proof. Let s> 3 and
B o {{4, 9,p3,...,p5} if deg(f) =1,
y {2,3,p3,...,05} if deg(f) =>2.
For each n € P, let N(n) be defined as in lemma 5; let
N; = max{nN(n) |n € P;} and let M > N, |

We consider the sets: R, ,; = R = {(, m)|1 <1, m < M and there exists
nePs; such that n|/ and n|m}, Ssu=S={(,m)eR|N,< I m},
Tom=T={(0,m|1 <l m<Mand min{l, m} < N},

Clearly # (T) = M? — (M — N,)2 < 2MN,.
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Now we show that S C I(M). Let (/, m) € S, let n € P; be such that n
divides / and m, so / = nl’,m = nm’. We have nN(n) < N; < [, m, hence
N(n) < I',m’. We wish to show that 8(E, m)) > 0, thus (/, m) € I(M).

For this purpose, let u = lcm(l, m), hence n divides u. Let ry be
sufficiently large, let rou < t, so there exists r such that ro < r and ru < ¢
< (r+ Du.

If 1 < kwewrite ku = k'n. If x, y, z are relatively prime integers such that
f(xk, y!, zm) = 0 then f(x*",y!n,zm'") = 0. By lemma 5, | yz|< 1. This
shows that ku € E ,, for each k > 1. Hence

#E(1 m)(t) r2 > r%
t? (r+ D2u? (ro+ 1)%2u?

for every ¢ > rou. Hence 6(E ¢, m) > 0 and (/, m) € I(M).
So # R #S+ #T< #I1I(M) + 2MN;. By lemma 3,

1
#R>M2[1— I1 (1——2)] — 25+IM

ne P n

Therefore

#I(M 1 2N, + 25+1
L R A B o

M2 ne P n2 M
1 2(N; + 25

_1_h(2)H (1___)_(____._2’
i=1 pi M
because

25 1 1 1 1

—xl-=] |l -——=)=1-—=] {1 -—=].

18 22 32 42 92
We recall that

)

Given € > 0, we choose s sufficiently large, so that

6h® ( 1) 1 6h®

2 —_— —
—< R [ |1-5)+—<—+¢&.
T i=1 Pi DPs n
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Let M > 2N (N, + 2°), hence
2(N, + 2%) 1 1

< —<—.
M NS pS
Finally
6h® _
#I(M)>1— — ¢, for every € > 0.
M? n2
6h®
Hence 8§(I) > 1 — >0 U

With the same method, we can prove a similar density result.

Let C = {(k, ], m)|1 <k, [, m and if x, y, z are relatively prime integers
such that f(x*,y',z™) = 0, then | xyz|< 1}.

Let

7
gif deg(f) =1,

1 if deg(f) =2.

A3 =

o 1
Let (3) = Y, _,— -

n3

PROPOSITION 4. With above hypotheses and notations,

h®)
S(C)=21—-——>0
B c(3)

Proof. We proceed as in the preceding proposition. Let s > 3, let
P, ={p;|1<j<s}, if deg(f) =22,
or P, ={4,9,ps,...,ps}, if deg(f) =1.

For every n € P, there exists N(n) > 0 as in lemma 5.

Let N, = max{nN(n) |n € P,} and let M > N;,.
Consider the sets:

R={(k 1, m|1<k I,m<M and there exists n € P, such that
nlk,n|l,n|m}.

S={(k,,m)e R|N; <k, I, m}.
T={k, I, m|1<k [, m<Mand min{k, [, m} < N,}.
Then RC SuTand #7T = M3 — (M — N,)3 < 3M2N;.
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We show that S ¢ C(M). Assume that (k, [, m) € S, let n € P, be such
that k = nk’,l =nl’',m = nm’; since k, I, m > N, = nN(n) then k’,!’', m’
> N(n) and by lemma 5, f(x*,y/,z™) = f(x*'", y"",z™'") = 0 with x, y, 2
relatively prime; then | xyz | < 1, thus (k, [, m) € C(M).

Hence

#R #S #T #CWM) 3N,
< + < + ;
M3 M?3 M3 M3 M
On the other hand, by lemma 3,

# R 3 x 25
TPo1-11 [1-L) - .
M3 n e P n3

Given € > 0, choose s such that

e s 1\ 1 &o
—— < h® ] (1——)+—<——+s;
q€) j=1

Let M > N;(3 X 25+ 3N;), hence

3 X 2%+ 3N,
<

and finally
# C(M) S #R 3N

-—>1- 1]

M3 T M3 M AEE

- 1 1 h®
S V(I B

1\ 3129+ N
T

j=1 pi] s )
h®
This shows that 6(C) > 1 — :
c3)

The particular case where f(X) = aX + bY — c¢Z (with a, b, c # 0) was
established by Powell and Ribenboim [P-R].

3. The aim in this section is to establish the following density result. For
the proof we acknowledge gratefully a useful suggestion by Andrew Granville.
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PROPOSITION 5. Let d>1, let ¥ =%; be the set of all homo-
geneous polynomials fe Z[X, Y, Z] of degree d, satisfying the following
conditions:

a) There is no triple (x,y,2) €C3(x 2 #(0,0,0), with two
coordinates equal to 0, such that f(x,y,z) =0.

b) There is no triple (x,y,z) € C3, (x, y, 2) # (0,0, 0), with exactly one
coordinate equal to 0, such that f(x,y,2) =0 and the partial
derivative of f with respect to another coordinate vanishes at

x, », 2).
c) There is no triple (x,5,2)€C3 (x,y,2 #(0,0,0), such that
3) ) Q)
—f , —f and — vanish at (x, y, 2).
0X 0dY 0Z

Then the set & has asymptotic density equal to 1.

Proof. Before the proof of this proposition, it is convenient to introduce
notations.

Let 2= 2#, be the set of all homogeneous polynomials f e Z[x, Y, Z]
having degree d.

Let @ = {fe 2¢,| f satisfies condition (a)}. Define Z®, Z© simi-
larly, so & = Z@ N PO n PO,

Let % =0\NP, AW =\ P@ and define Z®, Z© similarly.
Thus 4 = Dy BB U H©,

For each subset S of 7#”and integer N > 0, let S(N) = { f € S| the absolute
value of each coefficient of f is at most equal to N}.

d+2
Let Ii=I={Gjk|0<ijki+j+k=d}. So #1:( . )

is the number of monomials X?Y/Z*, of total degree d. It follows that

(37)

# 4 (N)= 2N+ 1) -1

(since the zero polynomial is not in 27°).

To prove that 1 # 7N 1 i ivalent t th
Iy ™ = 1S equivalen O prove at
N e (N 1 P
. # % (N)
limy - o =
# 4 (N)

For this purpose, it suffices to show:
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# XD (N) —0
# o (N)
#(_@(b)\ B (@) (V) _
#HN)
#(BONBD 0 BO)WN)
# o (N) -

Each polynomial fe 22 may be written as f = Y ,a;x X' Y/Z* with
aijk € Z.

1°) Hmpyo e

’

2°) lim

0 and

3°) lim

0.

Proof of (1°). Let Y, = {fe 5| f(1,0,0) = 0} = {f e & | a0 = 0}.
Define similarly Z5,, 2%y, s0 2@ = 2L, 0 %L, 0 29,.

(*37)-

Since # B y(N) = # BL ,(N) = # BY, = 2N+ 1) — 1, then
d+2
-1 740
# XA DON) <32N+ 1)( 2 ) and limyo o f——@ = )

# ' (N)

6]
Proof of (2°). Let #9, ={fe 5| f(x,»,0) = 0 and 5BJg(x, 7,0 =0
for some non-zero x,yeC}, HVy={fe #|f(x»0 =0 and
af

Py (x, , 0) = 0 for some non-zero x, y € C}. Define similarly ZY{,, #9.,

BY,, BD,. So BO\NF@c BLY, 0 BV, BL,0 BP0 BY,

(b)
- %}Z»)“ (d+2) ,
Now observe that # %%, (N) < QN+ 1) 2 .
Indeed, let fe #Y y(N), so there exist x, y € C, x, y # 0, with

Aa00X? + @g_1,10X%7 Y + 0+ @y a-1,0XY97 1 + a0 y? = 0
dagoox?~ !+ (d—1)ag_1,10x77 2y + **+ + a1,4-1,0?7' =0

Let J =I\{(d,0,0),(d-1,1,0)} and consider the mapping

O:f 2 @ijk),j kel

xd xd—ly
(dxd" (d- l)xd‘zy)

Since the matrix




DIOPHANTINE EQUATIONS 17

has rank 2, then ¢ is injective. Hence
(d+2) ,
(b) 2 /-
# By < 2N+1)
This implies at once that
(a’+2)_2
#(BDO\ B@)Y(N) L 62N+ 1) ?

#(B O\ BO)(N) _
# ' (N)

0.

and limy - o

Preliminaries to the proof of (3°). For the convenience of the reader, we
begin recalling facts about the resultant of two polynomials.
Let A be an integral domain, let m, n > 0, let

f=aX"+aX" '+ - +a,€ AlX],
g=by X"+ b X'+ - +b,e A[X],

with ayby # 0. By definition, the resultant of f, g is

{ao a, ... ... Qp 0 0 \

0 a a ... aum-: am 0

Res(fo ) =det | o i i By 0 e . O
\O bo b1 ces bn—l bn O 0 )

(the square matrix has n rows with the coefficients a; of f and m rows with
the coefficients b; of g).

This definition is completed by putting Res(f, by) = by, (when m > 0),
Res (ay, g&) = a, (When n > 0).

We shall require the following fundamental property of the resultant:

If f, g are non-constant polynomials, then f, g have a common zero in
some field containing the field of quotients of A, if and only if Res(f, g) = 0.

If the coefficients of f, garein A = Z[Y, Z] it is easy to estimate the degree
in Y,Z of Res(f,g). These and similar considerations follow without
difficulty from the very definition of the resultant.

Let (®tijx)(i,j, k) 7 be a family of indeterminates, let F = Y, 0, X Y/ Z*

. . oF

be the generic homogeneous polynomial of degree d. Let F, = —,
oF oF )

F, = a—Y , F3 = 52 ; they are homogeneous polynomials of total degree and
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also separate degree d — 1 in X, Y, Z with coefficients in Z[ok]i j, i er-

Considering F;, F,, F5; as polynomials in X, of degree d — 1, with
coefficients in A = Z[o,;;]/[Y, Z], let G; = Res(¥F;, F,) where {i,j, k}
={1,2,3}. So G;e A and more precisely G, = Y. G, Y"Zs (sum for
0<r,s,r+s=(d-1)? where G €Zla;mnlgmmer» e€ach GO
being homogeneous of degree 2(d — 1).

Viewing G, G,, G; as elements of B[Y] of degree (d— 1)?> where
B =ZJlo;«] [Z], let H; = Res(G;, Gy), where {i j, k} ={1,2,3}. Then
H;, = HYZ" with r = (d - 1)* and H” € Z[a, ,». »]. It should be noted that
HY is not identically zero; in fact, H* is a homogeneous polynomial in the
indeterminates a,,,, of degree 4(d — 1)3.

We shall also use the following notation. If P e Z[a;,.] [X, Y, Z], if
a = (aymn);, let P(a) e Z[X, Y,Z] be obtained by substituting a;,,
for o, .

Proof of (3°). The set ZO\(H @ u % ®) is identified with the set

% ={a = (@) € Z*D | there exist x, y, z, € C,
X, ¥, z not all equal to 0, such that F;(a) (x, ,2) =0 for i =1,2,3}.
Let
%' ={a = (amn) € Z*D | there exist y,z € C,
not both equal to 0, such that G;(a) (¥,z) =0 for i = 1,2,3} .

Again, let
Z" ={a = (@) € Z*D | there exist z € C,
z # 0 such that H;(a)(z) = 0 for i = 1,2,3}.

Note that €’ is identified with
%6' ={a = (amn) € Z#WD |Hi(5) =0fori=1,2,3}.

If S is any subset of Z#®, if N> 0, let S(N) = {(@imn) € Z*D || ayun |
< N for each (I, m, n) € I}. By the fundamental property of the resultant,
% c % c €, hence also E(N)C €'(N) C €"(N), so #(BIN(#®
U B D)) (N) < #E5 ().

Since the polynomials H,, H,, H; are not identically zero, some
indeterminate  a;,;,x, appears in the polynomial H;H,H;. Let
J = I\{(o, jo, ko)}. Given arbitrarily any family (@mn) @ m nes With
Qimn € Ly | @imn | < N, there exist at most 4(d — 1)? integers a;,,j,,k,» With
Ia,-ojokolgN, such that the family a = (a;4) is a common zero of
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()

H,, H,, Hy;. Thus # €y (N) < 4d-132N+1)
Hence
#(BON(F@ v A ®)) (N)

lim =0.

This concludes the proof of the proposition. [

4. In this section, we shall apply the following theorem of Schinzel and
Tijdeman [S-T]:

Let f e Q[X] with at least three simple zeroes (resp. two simple Zeroes).
Then there exists an effectively computable constant 7'(f) > 0, such that if
x, y, z are integers, | y | > 2, 2 > 2 (resp. | y | = 2, z > 3) and f(x) = y?, then
| x|, |yl 2 < TCf).

Let feQ[X], let @ > 2 and for every & > 1, consider the polynomial
frn = ﬁ f e Q[X]. Next, consider the exponential diophantine equations
(for h > 1):

(Er) SfX)=a"Y?.

Let z > 2 when f has at least three simple zeroes, or z > 3 when f has
exactly two simple zeroes. Define D(Z)f = {h > 1| there do not exist integers
x,y, with y > 2, such that f(x) = a"y*}.

LEMMA 6. Given f,a,z satisfying the above hypotheses. For every
h =21 there exists an effectively computable integer e = e(f,a,z, h) >0
such that if h’ >e, then h'he DY,

Proof. For each h > 1, let T, = T(f,) > 0 be the effectively compu-
table constant associated to f, by the theorem of Schinzel and Tijdeman.
Let e = e(f, a, z, h) be sufficiently large, namely

[log Tz,h]
e = +1])z,
hloga

where T, , = max{T,,|0 < r < z}.
Let A" > e. If there exist integers x, y such that y > 2 and f(x) = a"* yz,
let " = Iz + r, with 0 < r < z. So f(x) = a™(a'"y)* and therefore

a" <at|y| K T < Typ s
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log T
hW=kz+r<(+1)z< [og Z’h]+1z=e.
hloga

Hence, if ' > e then h'h € fo,)f. ]

PROPOSITION 6. Forevery a>2,z>2 (if f hasatleast three simple
zeroes) or z =3 (if f has exactly two simple zeroes), w(DY)) = 1.

Proof. Let D’ be the complement in N. , of the set Df,f)f. Let p be any
prime, let e = e(f, a, z, p) > 0 (as given in the preceding lemma). If A" > e
then A'p efo:)f, hence h’'p ¢ D’. Therefore the set D, is finite, hence
nD,)=0. By lemma 2, u(D)=0 and we conclude that

Py =1 0O

In particular, (D)) = 1.

The above result may be applied for the polynomials X” — 1, when
m > 2; it sharpens what was proved in [R 1] about the polynomial X? — 1.

To conclude, we wish to discuss Erdos conjecture about powerful numbers.

We recall that a natural number n = [] p§ (with distinct primes p; and
i=1

e; > 1) is a powerful number when each e; > 2. It is equivalent to say that
n = a?b3, where a > 1,b > 1 (and a, b are not necessarily relatively prime).
Erdds conjectured (see [G2], [R1]):

(E) There do not exist three consecutive powerful numbers.
This conjecture implies the following conjecture:

(Ey) For every m > 2 and even x > 2, the integer x2” — 1 is not
powerful.

Indeed, if xm—-1=x"+1)(xm"—1) is  powerful, since
ged(x”+1,x"—1) =1, then x™ + 1, x™ — 1 are powerful, and so is x™.

It is noteworthy that Granville [G2] showed how to derive from (E;) the
difficult theorem of Adleman, Heath-Brown and Fouvry (see also [R3]):

There exist infinitely many prime exponents p for which the first case
of Fermat’s last theorem is true (if x, y, 2 + 0, xP + y? = z?,ged(x, y, 2) = 1,
then p divides xyz).
Let f,(X) = 22mX?m — 1; for simplicity denote D(Z) = fo)f .
’'m

The conjecture (E;) may be rewritten as follows:
For every m > 2,3 € N Df,z)m

az=?2
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By proposition 6, we have seen that u(D(?‘) )=1foreacha>2, m2>=2.

Foreacha>2,let Q, ={m>2|3 eDfIZ’)m}.

For each m > 2, let R, = {a >2|3 e D, }.

Supporting the conjecture (E;), I note that from the theorem of Schinzel
and Tijdeman it follows that u(Q,) = 1, because Q. N Np is finite for every
prime p > 3 (Q, denotes the complement of Q,).

Concerning the sets R,,, we can prove the following proposition about
relative density:

PROPOSITION 7. Let ®(n) = n?> for every n > 1. Then, for every
m > 2, the uniform density of R, relative to ® is equal to 1.

Proof. Let R, denote the complement of R,, in N.,. We shall show that

Ho(R},) = 0.
It suffices to prove that, for every prime p, the set

R;)po =R, n{o(pn)|n > 1}

has relative density equal to 0. In fact, we show that (R, ), . is finite.
Given p, let T(p?, m) > 0 be such that if x, y, are integers x, y > 2, and
(2x)2m — 1 = (p?)3y? then x,y< T(p?*, m). Let n be such that
T(p?,m) < n3. If (pn) € R, then 3 ¢ D) ., which means that there
exist integers x, y > 2 satisfying (2x)?" — 1 = (p2n?)3y2 = (p?)3(n3y)2. So
n3y < T(p?,m) < n?, hence |y|< 1 which is contrary to the hypothesis.
This shows indeed that p,(R,,), - = 0 for every prime. So, u,(R,) = 0,
hence po(R,) = 1. [

S. In this final section, we give yet another application of the theorem
of Schinzel and Tijdeman, using the same method.

Let f e Q[X] be a polynomial of degree d > 1; assume:

1) f(0), f(1), f(— 1) are not proper powers.
2) f has some simple zero ¢t € C, t # 0.

For each m > 1, let f,,(X) = f(X™). Thus, if ¢, ..., ¢, € C are the m*"
roots of #, then f, has at least m simple roots.
Let

(Em) fm(X) =

For convenience, we say that a triple of integers (x, ¥y, 2) with y > 2,
222 if m>3 or z>3 if m =2, is a non-trivial solution of (E,) if

S(xm) = y=.
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According to the theorem of Schinzel and Tijdeman, for every m > 2 there
exists C, > 0 (and effectively computable) such that if (x, y, z) is a non-
trivial solution of (E,), then |x|,»,z < C,.

LEMMA 7. With above hypotheses, if m >2 and k> C,, then
(Erm) has only trivial solutions.

Proof. Let k > C,,, let (x, y, 2) be a non-trivial solution of (Ej,,). So
fx*m) = yz, thus (x%,y,z) is a non-trivial solution of (E,). Hence
| x¥| < C, < k. Then | x| < 1 and therefore f(0), £(1) or f(— 1) is a proper
power, which is contrary to the hypothesis. [

Let F = {m > 2| (E,) has only trivial solutions}.

PROPOSITION 8. n(F) = 1.

Proof. Let F’ be the complement of the set F; it suffices to show that
HF’) =0.

For each prime p, kp € F for each kK > C,, according to lemma 7. So
Np n F’ is finite. By lemma 2, n (') = 0. [l

Actually, the complement of F is finite, if f has at least two simple
Zeroes.
We note the following interesting application. Let a, b, ¢ be non-zero

c a ¢
integers, such that — Z and + Z — Z are not zero, nor 1, nor proper powers.

a c
Let f= ZX - ; . The above result is applicable to the polynomial f and

yields:

The set of m > 3 such that there exist integers n > 2, and x,y, with
y =2, satisfying ax™ — by” = ¢, has uniform density equal to zero.
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